
1

FarSpot: Optimizing Monetary Cost for HPC
Applications in the Cloud Spot Market

Amelie Chi Zhou, Jianming Lao, Zhoubin Ke, Yi Wang and Rui Mao

Abstract—Recently, we have witnessed many HPC applications developed and hosted in the cloud, which can benefit from the elastic

and diversified resources on the cloud, while on the other hand confronting high costs for executing the long-running HPC applications.

Although public clouds such as Amazon EC2 offer spot instances with dynamic and usually low prices compared to on-demand ones,

the spot prices can vary significantly and sometimes can even be more expensive than on-demand prices of the same type. Previous

work on reducing the monetary cost for HPC applications using spot instances focused on designing fault tolerance techniques or

selecting appropriate instance types/bid prices to make good usage of the low spot prices. However, with the recent update of spot

pricing model on Amazon EC2, these work may become either inefficient or invalid. In this paper, we present FarSpot which is an

optimization framework for HPC applications in the latest cloud spot market with the goal of minimizing application cost while ensuring

performance constraints. FarSpot provides accurate long-term price prediction for a wide range of spot instance types using

ensemble-based learning method. It further incorporates a cost-aware deadline assignment algorithm to distribute application deadline

to each task according to spot price changes. With the assigned subdeadline of each task, FarSpot dynamically migrates tasks among

spot instances to reduce execution cost. Evaluation results using real HPC benchmark show that 1) the prediction error of FarSpot is

very low (below 3%), 2) FarSpot reduced the monetary cost by 32% on average compared to state-of-the-art algorithms, and 3)

FarSpot satisfies the user-specified deadline constraints at all time.

Index Terms—Cloud computing, Spot market, Price prediction, Ensemble Models

✦

1 INTRODUCTION

Recently, we have witnessed that many emerging high per-
formance computing (HPC) or scientific computing applica-
tions are developed and hosted in the cloud [17]. As those
applications are usually long running jobs and are costly in
the cloud, monetary cost [26, 42] and performance [14, 15]
are important optimization factors. Message Passing Inter-
face (MPI) is the key programming paradigm for developing
HPC and scientific applications. That motivates us to inves-
tigate whether and how we can reduce the monetary cost
for MPI-based applications with performance constraint in
the cloud.

Most public cloud providers such as Amazon Elastic
Compute Cloud (EC2) offer a wide range of instance types.
Users can pay for the instances with different pricing mod-
els, such as on-demand instances and spot instances. Spot
instances have dynamic prices and the spot price can reach
up to 90% discount compared to the on-demand prices
of the same type. When using spot instances, users are
supposed to offer a bid price. When the bid price is higher
than the spot price, the chosen spot instance is successfully
acquired. When the spot price increases and becomes higher
than the bid price, a running spot instance will be stopped
(i.e., an out-of-bid event is occurred). Thus, although spot
instances can lead to lower cost, they can also cause exe-
cution failures due to unexpected out-of-bid events. This is
especially devastating to MPI-based applications since the

• A. Zhou, J. Lao, Z. Ke and Y. Wang are with the College of Computer
Science and Software Engineering, Shenzhen University. R. Mao is with
Shenzhen Institute of Computing Sciences and Shenzhen University.

• Rui Mao is the corresponding author.

failure of one task leads to the failure of the entire job (as-
suming no fault tolerance technique is applied). Although
one can set the bid price to be extremely high to avoid out-
of-bid events, it could lead to high cost since spot prices may
increase due to the high demand of the market and greatly
exceed the on-demand prices occasionally [18].

Many existing studies [16, 27, 37, 39] have been working
on the cost and performance optimizations for HPC appli-
cations in the spot market. Some of these studies focused
on designing various fault tolerance techniques to reduce
job failure rates while benefiting from the low price of spot
instances. However, these techniques either recover failed
job executions from checkpoints or from replications [16],
both of which lead to additional cost. Another widely stud-
ied way is to dynamically migrate running tasks between
instances to minimize task execution cost [18, 35, 36]. How-
ever, most of the existing studies make migration decisions
according to near-future trade-offs between execution time
and cost evaluated using the current spot prices as short-
term predictions of future prices [18]. On the one hand,
such simple model can easily lead to miss predictions and
hence high cost. On the other hand, due to lack of long-term
knowledge on spot prices, we may end up with too many
migrations. A few studies have been working on making
accurate price predictions and selecting appropriate bid
prices to make good usage of spot instances [3]. However,
it is hard to accurately predict spot prices which fluctuate
frequently based on the short-term relationship between
capacity demand and supply [36].

Recently, Amazon EC2 has updated its spot pricing
model in December 2017. In the new model, spot prices vary
according to the long-term relationship between resource
demand and supply. Thus, the spot prices are less frequently

2

3/09 3/12 3/15 3/18 3/22 3/25 3/283/06
0.00

0.05

0.10

0.15

0.20

0.25

Day

P
ri
ce
($
)

c1.xlarge

(a) Old pricing model

09/2
7
10/1

3
10/2

8
11/1

2
11/2

8
12/2

4
12/3

0
09/1

1
0.00

0.05

0.10

0.15

0.20

0.25 c1.xlarge

Day

P
ri
ce
($
)

(b) New pricing model

Fig. 1. Spot price variations of c1.xlarge instances in: (a) ap-northeast-
1c zone from Mar. 6th to Mar. 31th, 2017; and (b) us-west-1b zone from
Sep. 11th to Dec. 31th, 2020.

updated and are more predictable. Figure 1 shows the spot
price variations of the same instance type under the two
generations of pricing models. Clearly the spot price history
under the new pricing model has much less spikes com-
pared to the old one. With the new pricing model, users do
not need to submit any bid price and only pay for the spot
price as it is. In this case, it is important to make accurate
spot price predictions and select appropriate instance types
to make the best usage of low spot prices. Existing spot
price prediction models [2, 3, 8, 9, 40] are mostly based on
the previous generation spot pricing model of Amazon EC2,
which may not work well under the current spot market due
to the different features of the two pricing models.

In this paper, we propose FarSpot - an optimization
system for long-running HPC applications in the cloud
spot market which aims at minimizing application cost
while guaranteeing performance level requirements. There
are two main design components in FarSpot, namely an
ensemble-based predictor to accurately forecast spot price
variations in near future and an instance migration strategy
that can dynamically make cost-efficient migration deci-
sions. Due to the better predictability of the current spot
pricing model, our predictor can well capture the spot price
variations. Evaluations using real HPC applications show
that our ensemble-based predictor is highly efficient. It can
reduce the training overhead to less than 1 minute and
limit the average prediction error rate to below 3%. Based
on the price prediction results, we further designed a cost-
aware deadline assignment algorithm to distribute applica-
tion deadline onto each task. Our migration strategy ensures
that each task can be finished before its subdeadline with the
minimum cost. According to our evaluations, the migration
strategy of FarSpot can reduce the overall execution cost of
HPC applications by 32% on average compared to state-of-
the-art methods while ensuring performance constraints.

This paper makes the following contributions:

• Accurate spot price prediction. We carefully analyzed
the latest spot pricing model of Amazon EC2 and
constructed an ensemble-based model which combines
Random Forest [6] and LightGBM [20] with dynamical
weights for spot price prediction. Our ensemble-based
predictor is able to capture the characteristics of spot
price variations and make accurate predictions for a rel-
atively long time period compared to existing models.

• Cost optimization framework. We design a cost opti-
mization framework named FarSpot for HPC applica-
tions with deadline constraints. Using our spot price

predictor, FarSpot incorporates a cost-aware deadline
assignment method to optimally distribute application
deadline over tasks and an instance migration strategy
that dynamically migrates tasks to appropriate spot
instance types to reduce the task execution cost.

• Implementation and Evaluation. We implement our
methods using a simulator. We evaluate FarSpot us-
ing real HPC applications, including BT, SP and LU
in NPB [31] benchmark. Experimental results indicate
that our proposed method can reduce the monetary
cost by 32% on average compared to state-of-the-art
algorithms [35].

The rest of this paper is organized as follows. Section 2
presents the background and preliminaries. Section 3 shows
our motivations and overall design. Section 4 introduces our
VWH model, which is an ensemble-based predictor for spot
prices. We then propose our deadline distribution policy
in Section 5. We also elaborate our selection and migration
policy in Section 6. We evaluate the proposed techniques in
Section 7. We finally conclude this paper and discuss briefly
on future research directions in Section 8.

2 BACKGROUND AND PRELIMINARY STUDIES

2.1 Cloud Spot Market

Many cloud providers offer multiple instance types with
different capabilities to satisfy different user requirements.
For example, Amazon EC2 offers a wide variety of in-
stance types, such as compute optimized instances for high-
performance computing applications and memory opti-
mized instances for in-memory applications. These instance
types are charged at different prices on per hour or per
minute basis. Many studies have been proposed to opti-
mize instance configurations for different applications to
achieve a good trade-off between application performance
and cost [17]. In addition to different instance types, most
clouds also provide different pricing models to offer more
flexibility to users with different requirements on quality of
service (QoS). For example, Amazon EC2 provides five ways
to pay for instances, such as on-demand and spot instances.
On-demand instances provide reliable services to users and
are the most commonly used instances among different
pricing models. Spot instances are a special type of cloud
instances which have dynamic prices adjusted based on
long-term trends in supply and demand for spot instances.

Spot prices are usually much lower than on-demand
prices of the same type, but can also exceed the on-demand
prices occasionally. The spot pricing model of Amazon EC2
before 2018 was designed based on the short-term relation-
ship between supply and demand and thus was prone to
sudden spot price changes. For example, the spot price
can suddenly go up from 10% to over ten times of the
on-demand price when the demand for cloud resources
increases. When requesting spot instances, users have to
specify a bid price. Spot instances can be successfully ac-
quired when the bid price is higher than the spot price
and will be terminated when the spot price becomes higher
than the bid price. This means that spot instances do not
provide reliable services and many existing studies have
been proposed to improve the reliability of spot instances
and benefit from the low prices [35, 36].

3

Many existing studies focus on proposing fault tolerance
techniques to handle unexpected spot failures. For example,
Gong et al. [16] combined two common fault tolerance
mechanisms to reduce the failure risks and cost of MPI
applications using spot instances. Subramanya et al. [37]
optimized the cost of running non-interactive batch jobs
on instances by implementing fault-tolerance mechanisms
at the systems level. On the other hand, accurate prediction
of spot prices can also help users moderate the risk of spot
failures thus increase the reliability of spot instances [21].
Some existing studies have proposed complicated models
to predict the spot prices. For example, Xu et al. [40] and
Baughman et al. [5] both leveraged the Long Short-Term
Memory (LSTM) model to forecast spot prices. Chhetri et al.
[8] employed time series decomposition-based forecasting
method to decompose spot prices into time series compo-
nents for precise prediction. Khandelwal et al. [21] used re-
gression random forests to perform price prediction. Mishra
et al. [29] utilized the probability between price transitions
from the observed history for short-term price prediction.
Despite the effectiveness of the above studies, most of them
are outdated due to the update of spot pricing model.

Recently, Amazon EC2 has updated its spot pricing
model in December 2017 [32]. The new pricing model does
not require users submitting any bid price and the spot
prices are only determined by supply and demand for
Amazon EC2 spare capacity. We have analyzed the spot
prices of 68 types of instances on Amazon EC2 for over
three months (starting from Sept. 15th to Dec. 25th, 2020)
and found that the spot price can range between 24%-120%
of the on-demand price of the same type. This shows that the
spot prices have become more stable and predictable after
the model update. Existing studies that are designed based
on the previous generation pricing model may no longer
work for the updated pricing model.

Some studies have noticed the difference between the
two generation pricing models and came up with various
new spot prediction models. For instance, Chittora and
Gupta [9] have proposed a 2-layer stacked LSTM model for
spot price prediction, which is prone to over-fit when using
larger datasets. Al-Theiabat et al. [2] also utilized LSTM
model to perform spot price prediction, but they can only
ensure the accuracy of the price prediction over a relatively
short period of time (e.g., the next four hours). In fact, our
evaluation shows that the LSTM-based method is prone to
over-estimate the peak values or under-estimate the trough
values of spot prices, leading to an unfavorable forecast. For
example, when using LSTM to predict the long-term spot
prices (e.g., 24 hours), the relative error can reach up to 85%.

In summary, although the spot market has been well
explored by many existing studies, it is necessary to revisit
existing mechanisms to better predict spot prices and make
good usage of spot instances to reduce cost.

2.2 Ensemble Learning Methods

Machine learning is one of the most effective methods
in the field of data analysis [4]. It can discover hidden
patterns or features of data through historical learning and
data trends [34], so as to make accurate predictions for the
future. When it comes to spot prices, existing studies have
leveraged various machine learning algorithms to predict

the price of spot instances [1, 41]. Xu et al. [40] utilized
LSTM network to predict spot prices in 5-minutes and 1-
hour time windows for big data analytics workloads with
complex dataflow execution graphs, and thus may not be
suitable for long running MPI applications. Alkharif et al.
[3] proposed a SARIMA-based approach to predict spot
prices. The SARIMA model requires to calculate the autocor-
relation and partial autocorrelation functions to determine
model parameters, which incurs extra overhead for the price
prediction. Therefore, using a single model for spot price
prediction may not be able to achieve satisfactory results.

In statistics and machine learning, ensemble methods
use multiple learning algorithms to obtain better prediction
performance than any component learning algorithm alone
[33]. Ensemble methods are usually used to combine several
base predictors built with different learning algorithms.
Below are three popular ways to combine base predictors:

• Voting. This method builds multiple models separately
and uses simple statistics (e.g., the mean) to combine
the output of different models.

• Bagging. This method builds multiple models from
different subsets of the training data and then combines
these models using voting.

• Boosting. This method builds multiple models, each
of which learns to correct the prediction errors from
a prior model in the sequence of models.

The goal of ensemble methods is to make up for the
shortcomings of each individual learning algorithm, thereby
improving the generality and robustness of predictors.

The ensemble model has made great contributions in
many previous studies. For example, Liu et al. [23] proposed
a hybrid forecasting model using multi-resolution ensemble
method to carry out wind speed forecasting. Liu et al.
[24] combined four base SVM regressors as an ensemble
to estimate free lime content in cement clinkers. Liu et al.
[25] came up with a hybrid ensemble with time series
decomposition algorithm for electrical energy consumption
forecasting. Gao et al. [13] designed an adaptive ensemble
learning model by combining several base classifiers for in-
trusion detection. Despite the abundant studies on ensemble
learning methods, few has considered using the method for
spot price prediction.

3 MOTIVATION AND DESIGN OVERVIEW

3.1 Motivation

Spot instances provide elastic computing services at low
cost. However, with the dynamic change of spot prices,
services provided by spot instances may suffer from sudden
interruption due to out-of-bid events [38]. When an out-of-
bid event occurs, additional time and cost are wasted on the
killed executions. On the other hand, one can set the maxi-
mum price that he or she is willing to pay to be extremely
high to avoid out-of-bid events. However, this may lead to
high cost as spot prices can rise up to even higher than on-
demand prices. To improve the reliability and reduce the
cost of spot instances, it is important to accurately predict
spot price changes and migrate the computing from high
price instances to low price ones when necessary. However,
this task is non-trivial due to the following challenges.

4

11/7 11/10 11/13 11/16 11/19 11/22 11/25

0.4

0.8

1.2

1.6

2.0

Day

P
ri
ce
($
)

c4.8xlarge's actual price

Predicted price

(a) Spot price of c4.8xlarge

11/7 11/10 11/13 11/16 11/19 11/22 11/25

0.068

0.072

0.076

0.080

Day

P
ri
ce
($
)

m5.xlarge's actual price

Predicted price

(b) Spot price of m5.xlarge

11/7 11/1
0
11/1

3
11/1

6
11/1

9
11/2

2
11/2

5

0

10

20

30

40

50

Day

P
re
d
ic
ti
o
n
E
rr
o
r
(%
)

c4.8xlarge

(c) Prediction error of c4.8xlarge

11/7 11/1
0
11/1

3
11/1

6
11/1

9
11/2

2
11/2

5
0

2

4

6

8

Day

P
re
d
ic
ti
o
n
E
rr
o
r
(%
)

m5.xlarge

(d) Prediction error of m5.xlarge

Fig. 2. 24-hour spot price prediction using linear regression for two
instance types in eu-west-2c from Nov 7th, 2020 to Nov 25th, 2020.

17(1
8:00

)
18(1

2:00
)
19(0

6:00
)
20(0

0:00
)
20(1

8:00
)

0.140

0.144

0.148

0.152

0.156

P
ri
ce
($
)

ap-southeast-2a

ap-southeast-2c

(a)

0.5 1 2 4 8 16 32 64
0

20

40

60

80

100

120

140

160

R
at
io
(%
)

The size of the transmitted data (G)

Cost difference

(b)

Fig. 3. (a) Spot price variation of c5.2xlarge in ap-southeast-2a and ap-
southeast-2c zones from Oct 17th to Oct 20th, 2020. (b) Ratio of the
cost of a simple migration policy over the cost of no migration.

3.1.1 Prediction Models

Traditional time series forecasting methods, such as linear
regression [28], cannot accurately capture the changes in
spot prices. As an example, we utilize linear regression
to make 24-hour spot price predictions for c4.8xlarge and
m5.xlarge instances in eu-west-2c region from Nov 7th to
Nov 25th, 2020. As shown in Figure 2, the actual spot price
of c4.8xlarge dropped sharply from Nov 8th, while the price
of m5.xlarge fluctuates frequently with low variance. When
using linear regression to predict the spot price of c4.8xlarge,
the error rate goes up to 45%, while the prediction error
for m5.xlarge is much lower (less than 6%). This is because
traditional time series forecasting methods highly rely on
stationary data sets, while spot prices are non-stationary [1].

Ensemble learning algorithms can make up for the
weaknesses of single learning algorithms and thus make
better prediction results. Random Forest (RF) [6] and Light-
GBM [20] are two prevalent ensemble methods that have
been proven effective on a wide range of predictive mod-
eling problems. Specifically, RF is a bagging-based method
that constructs less correlated sub-trees to make combined
decision. Thus RF has the advantage of reducing the vari-
ance of decisions and tackling the over-fitting issue. Light-
GBM is a boosting-based method, in which “weak” models
are built sequentially and try to fix the training errors of

the predecessors. This characteristic notifies that boosting
can reduce bias, but it is prone to be over-fitting without
careful consideration in tuning the hyper-parameters. As
a result, RF and LightGBM are complementary to each
other and could work better for spot price prediction if
combined together. In order to further limit the total errors
by aggregating the predictions from these two models, we
propose a dynamically weighted ensemble. We also adopt
a SVM classifier to adjust weights dynamically since it is
easily adaptable to multi-class problems and is relatively
memory efficient.

3.1.2 Migration Policy

Existing studies have been using migration technique to hop
between spot instances to reduce the job execution cost [35].
In the migration process, the instance on the original host
will be stopped. Then all memory pages from the source
will be copied to the destination, and the instance will
be resumed again on the destination host. It is clear that
there is downtime between stopping the source instance and
resuming the destination instance, thus incurring cost and
performance overhead. For this reason, merely chasing the
lowest spot price may not lead to the lowest job execution
cost. For example, consider using c5.2xlarge instances from
two different zones for job execution. Figure 3(a) shows the
spot price variation in the two zones. A simple migration
policy is to always migrate the current instance to the zone
with the lowest price. As prices in the two zones change
frequently, the frequency of migration is high and thus
bringing additional cost. When the size of the memory
footprint increases from 512MB to 64GB, the migration cost
increases and the execution cost optimized by the simple
migration policy increases from 2% to 1.6x of that of no
migration. Thus, we need to carefully design the migration
policy to reduce execution cost. Also, many existing studies
have proposed various methods to estimate the execution
time of HPC applications on different platforms [7, 30],
which gives us the benefit of accurately estimating the cost
and gain when migrating HPC tasks between spot instances.

3.2 Design Overview

Motivated by the above challenges, we need to design a task
scheduling algorithm which migrates tasks among different
spot instance types and availability zones to achieve low
execution cost while satisfying the deadline constraint of
the job. To achieve this goal, we first need to accurately
predict the spot price variations of different instance types to
make the best migration decisions. In this paper, we propose
FarSpot, which has two main components. The first compo-
nent is an ensemble-based predictor to predict spot prices
in the near future. Considering the complementary features
of RF and lightGBM algorithms, our predictor combines
the two algorithms as an ensemble using weighted voting
by a Support Vector Machine (SVM) classifier. The second
component is a controller, which makes migration decisions
dynamically for tasks according to spot price prediction
results, system information (such as resource usage) and
execution requirements (such as task deadlines). Note that
we propose a cost-aware deadline distribution algorithm to
assign the subdeadline to each task.

Figure 4 shows the overall framework of FarSpot. Specif-
ically, the Predictor collects historical spot price traces from

5

Classifier

Sub-Predictor

Sub-Predictor

Predictor

I. Collect historical

Spot Price

Cloud Market

II. Send predicted spot price

III. Monitor source

VM's Usage
IV. Request a VM

Controller

Decision Maker

Calculator

DDL Assigner

User

II. Provide job's deadline

Fig. 4. FarSpot Overview.

the Cloud Market, and predicts spot price changes by com-
bining the prediction results of the two base predictors (i.e.,
RF and LightGBM) using SVM classifier. The predicted spot
price is sent to the Controller to make scheduling decisions.
For each running task, the Controller first computes the
subdeadline for it; it then monitors the usage of the source
instance of the task and decides whether to migrate the
task considering the predicted spot price changes and the
deadline requirement. If a migration decision is made, the
Controller will send a request to the Cloud Market to launch
a new instance and migrate the running task accordingly.

In the following three sections, we elaborate the details
of the Predictor and Controller components of FarSpot.

4 ENSEMBLE-BASED PREDICTOR FOR SPOT

PRICES

In this section, a variable-weight hybrid (VWH) model is
proposed by combining a LightGBM and a RF model, where
the weights of the two models are dynamically adjusted
depending on the relative errors between the actual and
predicted spot prices using a SVM classifier. We collect real
spot price traces from Amazon EC2 to train our model.

4.1 Basics of LightGBM and RF Models

4.1.1 LightGBM

LightGBM is an open-source Gradient Boosting Decision
Tree (GBDT) algorithm proposed by Microsoft. It adopts
the leaf-wise strategy to grow trees and perform splits by
calculating the gain of variance. The abstract process of
LightGBM algorithm can be described as below:

1) Creating and initializing n decision trees with training
samples whose weight is 1

n
;

2) Training each weak predictor fi(x);
3) Calculating and updating the weight of each weak

predictor wi;
4) Constructing final strong predictor F (x) as below:

F (x) = w1f1(x) + w2f2(x) + · · ·+ wnfn(x) (1)

Overall, LightGBM is highly efficient in both memory
consumption and training speed [20]. This merit allows us to
easily retrain our model if cloud providers such as Amazon
updated their spot price model again in the future.

4.1.2 Random Forest (RF)

RF is a classification and regression algorithm utilizing
bagging method to build numerous decision trees from
different training data subsets. For regression tasks such as

price forecasting, the mean prediction of individual trees
is outputted. For example, given the sample dataset x, RF
constructs and grow k trees. After each tree Ti is grown, RF
returns its price prediction F k

rf (x) as below:

F k
rf (x) =

1

k

k
∑

i=1

Ti(x) (2)

Although a well-tuned LightGBM is likely to outstrip
the RF model, tuning the parameters for LightGBM is by no
means easy. In contrast, we can get satisfactory results with
RF without caring much about parameters. Also, it is robust
in most cases since the RF model does not overfit easily [10].

4.2 Combining LightGBM and RF Models

Due to the complementary feature of LightGBM and RF
discussed earlier, we propose to combine the prediction
results of the two models to make better spot price forecast.
Specifically, we use a SVM-based multi-class classifier to
dynamically combine the two models according to the mea-
surement of the combination results. We adopt RE (Relative
Error) as the standard metric to measure the accuracy of the
results.

REi
m(t) =

∣

∣P i
m(t)− P i

a(t)
∣

∣

P i
a(t)

(3)

where REi
m(t) is the RE of the forecast result from model m

on instance i at time t, and P i
m(t) and P i

a(t) are the predicted
and actual spot price on instance i at time t. Our goal is to
reduce RE as much as possible.

Our SVM-based multi-class classifier dynamically assign
different weights to each model according to the RE mea-
sures. In order to train our classifier, we generate training
data from collected spot traces using sliding windows of
size W . Each data point represents the spot price in one
hour and thus each window contains the spot price history
in the past W hours (i.e., t−W, . . . , t−1 for time window t).
We label each training data window according to the ratio
of the RE of the LightGBM’s forecast results to that of the
RF model’s. That is:

R(t) =
|RERF (t)−RELG(t)|

min(RERF (t), RELG(t))
(4)

where R(t) is the ratio of time t, RERF (t) and RELG(t) are
the RE of the forecast results of LightGBM and RF of time t,
respectively. Therefore, we can finish the data labeling using
the criteria listed in Table 1. Furthermore, we train the SVM
using the data set generated above. We divide the data set
into two parts, namely training set (50%) and evaluation
set (50%). Also, we set the regularization parameter to 0.8,
whereby the SVM has an average prediction error of 12.5%
on the input data whose R(t) is higher than 0.01.

Finally, we combine the time series forecast results across
the LightGBM and the RF model with variable weights
derived from the SVM. The final forecast result of our VWH
model can be calculated as below:

Pf (t) = C(t)× PLG(t) + (1− C(t))× PRF (t) (5)

where C(t) is the output of SVM using training data win-
dow at time t. PLG(t) and PRF (t) are the forecast results for
time t using LightGBM and RF models, respectively.

Here is an example to illustrate the process. When
RERF (t) is 8% and RELG(t) is 10%, that is, RF is inferior
to LightGBM in conducting price prediction for time t,

6

TABLE 1
Weights Selection for the Combination of Forecasts

RE R(t) Label

RERF (t) < RELG(t)

> 0.03 1

> 0.02 & 6 0.03 2

> 0.01 & 6 0.02 3

6 0.01 4

RERF (t) = RELG(t) \ 5

RERF (t) > RELG(t)

6 0.01 6

> 0.01 & 6 0.02 7

> 0.02 & 6 0.03 8

> 0.03 9

R(t) can be calculated using Equation 4 to be 0.25. We
then label this training data window as Label 1 according
to the criterion, notifying that RF is dominant in making
price forecast for time t. Specifically, the output of SVM
for time t is calculated as C(t) = Label × 0.1 = 0.1, and
the final forecast result of our VWH model is calculated as
Pf (t) = 0.1× PLG(t) + 0.9× PRF (t).

5 THE DEADLINE DISTRIBUTION POLICY

Provided with the user specified deadline of the job, we
propose our deadline distribution policy to determine the
subdeadline of each task. As the application deadline is
allocated to individual tasks, FarSpot can ensure that each
task is able to finish execution before its subdeadline, thus
satisfying the user given deadline.

5.1 Elemental definition

To begin with, for each task ti, we specify its Earliest
Start Time EST (ti) and Latest Finish Time LFT (ti) as the
earliest time when ti starts its execution and the latest time
when ti finishes its execution, respectively. Its Minimum
Execution Time MET (ti) is defined as follow:

MET (ti) = min
v∈V

ET (ti, v) (6)

where V is the set of instance types, and ET (ti, v) denotes
the total execution time for ti on instance v. After having
the user specified deadline for the whole job Deadline, we
then can initialize EST (ti) and LFT (ti) as follows:

EST (ti) =

{

0, if ti is the first task

EST (ti−1) +MET (ti−1), otherwise

(7)

LFT (ti) =

{

EST (ti) +MET (ti), if ti is the last task

LFT (ti+1)−MET (ti+1), otherwise

(8)

5.2 The Subdeadline Assigning Algorithm

In our deadline distribution policy, we attempt to find the
cheapest distribution plan whereby each task can finish
execution before its latest finish time. Thus we propose the
subdeadline assigning algorithm as shown in Algorithm 1.

This algorithm traverses the set of tasks starting from the
first task to the last one, at each step trying to increase the
subdeadline of the current task by a unit of time (line 6-8)
and then recompute the cheapest schedule for all tasks (line
9-17). If extending the subdeadline of taski brings about the

Algorithm 1 Subdeadline Assigning Algorithm

Input: Pa(V) and Pf (V): The set of actual and predicted spot prices,
where V is the set of instance types; EST (T) and LFT (T): The set
of EST and LFT for all tasks computed by Eq. 7 and Eq. 8, where T
is the set of tasks; MET (T): The MET for all tasks; Deadline: The
user specified deadline;

Output: SubD: The set of subdeadlines for each task;
1: set subD(taski)← EST (taski) +MET (taski) for all tasks;
2: D ← subD(taskn);
3: while D < Deadline do
4: best← null;
5: min←∞;
6: for all taski ∈ T do
7: D ← D + a unite of time;
8: subD(taski)← subD(taski) + a unite of time;
9: for all taskj ∈ T do

10: v ← the VM that has the lowest cost executing taskj ;
11: costj ← 0;
12: for m = 1 to ET (taskj , Vv) do
13: if EST (taskj) +m is in the current hour then

14: costj ← costj + P
EST (taskj)
a (Vv);

15: else
16: costj ← costj + P

EST (taskj)+m

f
(Vv);

17: update EST and LFT for all tasks;

18: cost←
∑t

k=1 costk ;
19: if cost < min then
20: min← cost;
21: set this schedule as best;

22: revoke the changes of D, subD, EST , and LFT for all tasks;

23: if best then
24: update D, subD, EST , and LFT for all tasks based on best;
25: else if D + n 6 Deadline then
26: set subD ← subD + a unite of time for all tasks;
27: update EST and LFT for all tasks;
28: D ← D + n unites of time;
29: else
30: subD(taskn)← subD(taskn) +Deadline−D;
31: update EST (taskn) and LFT (taskn);
32: D ← Deadline;

33: return subD;

lowest execution cost, the algorithm considers this schedule
as the best; it then updates all the relative attributes for each
task according to the schedule (line 23, 24). However, if there
is no saving by increasing the subdeadline for any task, that
is, no best schedule currently, the algorithm either increases
the subdeadline by a unit of time for all tasks or extends the
subdeadline of the last task (line 25-32).

6 SELECTION AND MIGRATION POLICY

In this section, we introduce the selection policy that FarSpot
adopts to choose the initial instances for tasks. We then
propose a migration policy that decides when and where to
migrate a running instance to a new one based on predicted
spot prices. The objective of the migration is to reduce job
execution cost while satisfying the deadline constraint.

6.1 Initial Instance Selection

Algorithm 2 shows the algorithm adopted by FarSpot to
select initial instances for tasks. Specifically, FarSpot first
initializes the minimum spot price recorder min and the
selected instance type parameter c (line 1). It then traverses
the set V to find out which instance type can satisfy the
deadline assigned to the task and has the lowest predicted
cost (lines 2-7). Finally, FarSpot requests a spot instance of
this given type as the initial container for the task to run.

When requesting a spot instance, users can optionally
specify a maximum price that they are willing to pay.

7

Algorithm 2 Initial Instance Selection Algorithm

Input: Pa(V) and Pf (V): The set of actual and predicted spot prices,
where V is the set of instance types; task: The task for scheduling;
ct: The current time;

Output: c: Selected instance type;
1: Initialize the minimum spot price min←∞ and c← −1;
2: for i = 1 to n do
3: if ET (task, Vi) < subD(task) then
4: cost← 0;
5: for j = 1 to ET (task, Vi) do
6: if ct+ j is in the current hour then
7: cost← cost+ P ct

a (Vi);
8: else
9: cost← cost+ P

ct+j
f

(Vi);

10: if cost < min then
11: min← cost;
12: c← i;

13: return c

Requested spot instances are charged at the spot prices, and
will be terminated/stopped/hibernate when the spot price
exceeds the specified maximum price. As FarSpot aims at
migrating tasks among spot instances to reach low cost, we
set the maximum price to very high to guarantee uninter-
rupted access to the resources. In our implementation, we
set the maximum price to 10x of the On-Demand price of
the same type.

6.2 Migration Policy

FarSpot dynamically migrates tasks from the current run-
ning instances to a more cost-efficient one if any. Specifically,
FarSpot monitors the spot price variations of different in-
stance types and periodically predicts spot price changes in
near future using the latest collected price traces. In our im-
plementation, we set the period to one hour. On detecting a
spot price change, FarSpot estimates the migration cost and
benefit for different tasks and makes migration decisions
accordingly.

6.2.1 Migration cost

FarSpot adopts the stop-and-copy migration strategy which
contains three major steps: 1) stop the task execution in the
original instance, 2) copy and transfer all memory pages
from the original instance to the new instance, and 3) resume
task execution on the new instance. Once the memory
copying process is complete and the destination machine
receives a consistent image, the original VM is suspended
and the new VM will take over all its services [12, 22].

The migration process incurs additional time and cost on
the data movement. Assume the memory size of the source
VM c is Mc, and the network bandwidth between the source
VM and target VM i is Bci. Then the memory data transfer
time can be calculated as Hci = Mc/Bci. Due to the stop-
and-copy strategy, both VM c and i are running during the
data transfer while the task execution is stopped. Thus, the
migration cost from VM c to a new VM i at time t can be
calculated as below:

Gi(t) =

t+Hci+Oi
∑

k=t

(P c
f (k) + P i

f (k)) (9)

where P c
f (t) and P i

f (t) represent the predicted spot price
for the source VM c and the target VM i, respectively, at
the billing cycle time t. The term Hci +Oi denotes the total
amount of billing cycles, including the migration time Hci

and the boot time of the target VM Oi.

6.2.2 Anticipated saving

FarSpot performs an instance migration only when there’s
potential of cost saving. The cost saving mainly comes from
running the unfinished task execution on a cheaper spot
instance. We estimate the remaining execution time of a task
on a VM i as below:

RT i
W = (Ec −RT c

A)× Ec/Ei (10)

where RT c
A is the time that the task has run on instance c.

Ec and Ei are the total time needed for the task to finish
execution on VM c and i, respectively. We can estimate the
execution time of tasks on all instance types with offline
profiling.

As a result, FarSpot estimates the anticipated saving of
the migration in time t as below:

Si(t) =

t+RTc
W

∑

k=t

P c
f (k)−

t+RT i
W

∑

k=t

P i
f (k)−Gi(t) (11)

where the first and second terms represent the remaining
execution cost of the task without and with the migration,
respectively. The anticipated saving equals to the spot in-
stance rental saving deducted by the migration cost.

After obtaining the anticipated saving, FarSpot can make
migration decisions based on a simple rule that FarSpot
only hops to a new VM if the saving is positive. Among

all candidate instance types j where RT j
W 6 Deadline

and Sj > 0, FarSpot selects the one with the maximum
anticipated saving as the destination VM. After finishing all
the selection process, FarSpot performs the stop-and-copy
migration between the source VM and destination VM.

7 EVALUATION

This section presents our experimental results on evaluating
the proposed framework. Overall, we conduct two major
sets of experiments. Specifically, we first assess the predic-
tion accuracy of our VWH model to evaluate how accurately
FarSpot predicts the spot price for different instance types
in Section 7.3. Further, we use real applications to study
the cost optimization results of our approach in comparison
with the state-of-the-art approaches in Section 7.4. Finally,
we also experimentally assess the impact of different pa-
rameters with sensitivity studies in Section 7.5.

7.1 Implementation Details

Fisrt, Amazon provides historical spot price traces via AWS
CLI for a period of up to 90 days before a request is
made. We have utilized its API endpoint to collect publicly-
available EC2 spot price traces from the ap-southeast-2 and
eu-west-2 region for over 3 months, starting from September
15th, 2020 to December 25th, 2020. The dataset contains
the historical spot price traces for 68 instance types with
distinct prices among different AZs or regions. Specifically,
spot price histories are collected every hour and the price
trace for each instance type is an array with 2445 price data.

As for our VWH model, we build the LightGBM and RF
models using the interfaces in Scikit-learn1 and train them
individually using the spot price traces for three instance
types from the dataset (i.e., m5ad.xlarge in ap-southeast-
2a, c5ad.12xlarge in ap-southeast-2b, and c5.large in ap-
southeast-2c). We also set the number of lagged dependent

1. https://scikit-learn.org/stable/index.html

https://scikit-learn.org/stable/index.html

8

TABLE 2
The regions and instance types involved in the prediction experiment

I# Region Instance
I1 ap-southeast-2b c5ad.12xlarge
I2 eu-west-2c c4.8xlarge
I3 ap-southeast-2c c5ad.12xlarge
I4 ap-southeast-2a m5.8xlarge
I5 ap-southeast-2b c5.large
I6 ap-southeast-2a c5.2xlarge
I7 ap-southeast-2c c5d.xlarge
I8 ap-southeast-2c c5.2xlarge

variables to 4, that is, the predictors for the forecast result of
the ith hour will be xi−1, xi−2, xi−3, and xi−4, where xi−1,
xi−2, xi−3, and xi−4 are the actual spot prices of the past
four hours. Furthermore, we divide each spot price trace in
the dataset mentioned above into two parts: training set (80
percent) and test set (20 percent). We evaluate the accuracy
of our models using the test set after training.

The training overhead of these two models is well con-
trolled since it only takes within 1 minute to train the models
on our commodity server. Also, our models can be easily
fine-tuned by the incremental learning without retraining
all over again when inputting the lately collected spot
price traces. In order to evaluate the overall performance
of the VWH model, we conduct the following prediction
experiments with the instance types described in Table 2.

As for our simulator, we simulate a cloud environment
where applications run within the ap-southeast-2 and eu-
west-2 region with totally 20 compute optimized spot in-
stance types, including c5ad.12xlarge in ap-southeast-2c,
c5.9xlarge in eu-west-2a, and c5ad.8xlarge in ap-southeast-
2b. For all instance types, we set the network bandwidth
of them according to the data provided by Amazon (e.g.,
10Gbps for c5.9xlarge).

We adopt existing models to estimate task execution
time on different instance types [7]. Specifically, we first run
workflows on our local machine and collect the execution
time traces. Assuming that the performance of each task
is a linear function of its host VM’s number of vCPU, we
can estimate the execution time of tasks on different types
of instances using the profiling traces and the hardware
configurations of the instances according to the estimation
model [7]. For example, if an application is running on
an instance with 16 vCPUs, it will have a 4x slowdown
after being migrated to the one with 4 vCPUs. Also, we
presuppose Amazon EC2’s standard billing interval as 1
minute.
7.2 Experimental setup

7.2.1 Applications

In order to measure the monetary cost optimization of long-
running HPC applications on spot instances, we apply our
model to NAS Parallel Benchmarks (NPB [31]) kernels ver-
sion 3.3.1. We select three pseudo applications, including BT
(Block Tridiagonal solver), SP (Scalar Penta-diagonal solver),
and LU (Lowerupper Gauss-Seidel solver). The default
problem size is CLASS C. We run each of these applications
multiple times (150 to 250 times) in a back-to-back manner
sequentially to extend to large scale computing.

7.2.2 Comparisons

We first evaluate the prediction accuracy of the VWH model
in FarSpot by comparing with the LSTM model. Then,

I1 I2 I3 I4
0

10

20

80

90

R
el
at
iv
e
E
rr
o
r
(%
)

Instance Type

55

(a)

I5 I6 I7 I8
0

1

2

5

6

R
el
at
iv
e
E
rr
o
r
(%
)

Instance Type

24-hour forecast by LSTM

1-hour forecast by LSTM

24-hour forecast by VWH

1-hour forecast by VWH

(b)

Fig. 5. Comparison of LSTM and VWH for different instance.

we assess the cost-efficiency of FarSpot by comparing the
following four approaches.

• On-demand. This approach, as our Baseline, simulates
the monetary cost optimization with only on-demand
instances. We select the on-demand instance with the
best performance (minimal execution time). In the fol-
lowing experiments, we set the loose deadline, moderate
deadline, and tight deadline as five times, three times, and
twice of the runtime of Baseline, respectively. We set the
deadline to loose by default.

• HotSpot. Shastri and Irwin [35] proposed a resource
container that dynamically selects and self-migrates to
new VMs as spot prices change. It does not perform
any price prediction, but makes decision based on the
historical price combining with sophisticated migration
policy instead.

• LSTMSpot. The Long Short-Term Memory (LSTM [19])
is one of the state-of-the-art models for time series fore-
casting. In this approach, we replace our VWH model
with LSTM model instead. Specifically, it leverages
LSTM to forecast the spot prices but distributes dead-
line and makes migration decision based on FarSpot’s
deadline distribution policy and migration mechanism,
respectively.

• FarSpot. This approach is our proposed framework,
which is a prediction-based algorithm for tasks schedul-
ing. It makes migrations with full consideration of the
predictability of spot prices and the migration trade-off.

7.2.3 Configuration

As for simulations, we randomly select a start point in
the trace and leverage the approaches above to execute
the applications. We keep on calculating the monetary cost
and runtime while executing the applications. We repeat
the simulation for 150 times and then calculate the average
execution results for evaluations on all applications.

7.3 Prediction accuracy of FarSpot

In this part, we compare our VWH model with LSTM to
illustrate its effectiveness. We study the prediction error
rates for 1-hour prediction and 24-hour prediction of the two
models above respectively. Note that we first sort our testing
instance types in descending order according to the variance
of their actual spot prices (i.e., the greater the variance is,
the greater the spot price fluctuates). Then, we present the
experimental results for the top 4 (I1-I4) and last 4 (I5-I8)
instance types. Table 2 shows the regions and name of these
8 instance types.

Fig. 5 shows the accuracy of LSTM and VWH respec-
tively in predicting the price of the instances mentioned

9

FarSpot LSTMSpot HotSpot
0

10

20

30

40

50

60

70

C
o
st
(%
o
n
d
em
an
d
)

(a)

FarSpot LSTMSpot HotSpot
0

500

1000

1500

2000

2500

T
im
e
(%
o
n
d
em
an
d
)

DDL

(b)

FarSpot LSTMSpot HotSpot
0

100

200

300

400

500

600

N
u
m
b
er
o
f
m
ig
ra
ti
o
n
s

(c)

Fig. 6. Comparison of the average (a) monetary cost, (b) execution time and (c) number of migrations when using HotSpot, LSTMSpot, and FarSpot
under the loose deadline. The error bars represent the maximum and minimum of each metric.

0 7000 14000 21000 28000 35000
0

10

20

30

40

T
o
ta
l
C
o
st
($
)

Elapsed time (minute)

HotSpot's cost

FarSpot's cost

LSTMSpot's cost

Fig. 7. Detailed execution results of one simulation under loose deadline.

above. The error bars show the maximum and minimum
error rates of each prediction. It can be seen that compared
with LSTM, VWH presents more precise predictions.

For 24-hour predictions, the VWH model has obvious
advantages in dealing with prices with large fluctuations:
the average prediction error rate for I1 to I4 is 1%-2%, and
the maximum error among them is just 18%. However, the
average prediction error rate of LSTM for these types ranges
from 10% to 12%, and the maximum error rate among them
even reaches 85%. The reason for this occurrence is that the
volatility of spot prices is relatively large, and LSTM cannot
make correct predictions when encountered sudden changes
in the price. But, when the volatility gets low, LSTM also
carries out precise predictions. When it comes to I5 to I8,
the average prediction error of LSTM for them is less than
2%, and the maximum error among them is only 5%. In
contrast, the VWH model outshines LSTM obviously. The
average error rate of VWH for I5 to I8 is much less than 1%,
and the maximum error among them is as low as 2%.

As for 1-hour predictions, the error rate of LSTM is
significantly reduced: the average prediction error rate for
I1 to I4 is 4%-5%, and the maximum error rate among these
types goes down to 26%. Also, the average error rate for I5
to I8 is less than 1%, and the maximum error rate among
them is 2%. As before, our VWH model still outperforms
LSTM greatly: the average prediction error rate for I1 to I4
is below 1%, and the maximum error rate among them is
only 6%. In addition, the average prediction error rate for
I5 to I8 is nearly to 0, and the maximum error rate among
these types is just 1%.

On balance, LSTM has obvious disadvantages in fore-
casting volatile spot prices in a long-term manner, and its
accuracy is unstable, therefore unreliable. However, VWH
can efficiently extract features from the spot price with large
fluctuation and then make accurate predictions with lower
and more stable error rate.

FarSpot FarSpot

-ND

FarSpot

-Fleet

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

C
o
st
(N
o
rm
al
iz
ed
to
F
ar
S
p
o
t)

Fig. 8. Comparison of the normalized monetary cost when using
FarSpot, FarSpot-ND, and FarSpot-Fleet under loose deadline. The
error bars represent the maximum and minimum of each metric.

7.4 Simulation results

Fig. 6(a) and 6(b) present the average monetary cost and exe-
cution time optimization results of the compared algorithms
in our simulations. All results are normalized to Baseline.
The number of migrations of the compared algorithms are
shown in Fig.6(c). We further show the detailed execution
results of the compared algorithms during one simulation
in Fig. 7. We have the following observations.

First, compared to LSTMSpot, FarSpot reduces the mon-
etary cost by 24%. This is mainly due to the inaccurate price
prediction of LSTMSpot which leads to sub-optimal VM
migrations. Although the makespan of FarSpot is just 2%
less than that of LSTMSpot, FarSpot executes less migra-
tion, thereby ensuring better performance of applications.
Second, FarSpot is able to obtain much better performance
results compared to HotSpot. Specifically, FarSpot reduces
the execution time and monetary cost by 50% and 32%,
respectively, compared to HotSpot. This is mainly because
HotSpot, unlike any prediction-base approach, can be eas-
ily hoodwinked by the current spot price. For example,
HotSpot tends to hop to a new VM when the price of
the VM is low enough. However, if the price of the VM
increases greatly relative to other types of VMs in the
next billing interval, HotSpot may continue to perform
the migration without considering the long-term trade-off.
Moreover, HotSpot may have difficulty in ensuring the per-
formance constraint since it migrates too often and executes
applications for a relatively long time.

Furthermore, we study the improvements brought by
each individual technique of FarSpot, namely the deadline
distribution policy and the migration policy. The evaluation
results are shown in Fig. 8. FarSpot-ND is FarSpot with-
out deadline assignment. FarSpot-Fleet is FarSpot with the
migration policy replaced to the default allocation strategy
of Amazon EC2 Spot Fleet [11]. Compared to FarSpot-ND

10

4 8 16 32 64
0

10

20

30

40

50

60

70

C
o
st
(%
o
n
d
em
an
d
)

Memory Footprint (GB)

(a)

4 8 16 32 64
0

200

400

1400

1600

1800

2000

T
im
e
(%
o
n
d
em
an
d
)

Memory Footprint (GB)

DDL

(b)

4 8 16 32 64
0

50

100

300

350

N
u
m
b
er
o
f
m
ig
ra
ti
o
n
s

Memory Footprint (GB)

FarSpot

LSTMSpot

HotSpot

(c)

Fig. 9. Comparison of the average (a) monetary cost, (b) execution time and (c) number of migrations when using HotSpot, LSTMSpot, and FarSpot
under the loose deadline as the size of transmitted data varies.

loose moderate tight
0

10

20

30

40

50

60

C
o
st
(%
o
n
d
em
an
d
)

(a)

loose moderate tight
0

100

200

300

400

500

600

T
im
e
(%
o
n
d
em
an
d
)

(b)

loose moderate tight
0

25

50

75

N
u
m
b
er
o
f
m
ig
ra
ti
o
n
s

FarSpot

LSTMSpot

(c)

Fig. 10. Comparison of the average (a) monetary cost, (b) execution time and (c) number of migrations when using LSTMSpot and FarSpot with
4GB memory footprint as the deadline requirement varies. The error bars represent the maximum and minimum of each metric. The result of
HotSpot is omitted since it is not aware of the job’s deadline.

and FarSpot-Fleet, FarSpot reduces the average cost by 8%
and 31%, respectively, which shows the effectiveness of each
individual technique. It also shows the need for combining
the deadline assignment and sophisticated migration policy
together to further reduce job execution cost in spot market.

We also study the generality of FarSpot using recently
collected spot price traces within the ap-southeast-2 and eu-
west-2 region for over a month, starting from January 3rd,
2021 to February 25th, 2021. FarSpot still manages to reduce
the monetary cost over LSTMSpot by 16% and HotSpot
by 24%. While ensuring performance constrictions, FarSpot
also outperforms LSTMSpot and HotSpot by 10% and 47%,
respectively, in terms of the execution time.

7.5 Sensitivity studies

We also conduct sensitivity studies to exercise our algorithm
and isolate key factors, such as application’s memory foot-
print and deadline requirement, that affect FarSpot’s relative
cost and performance. To enable control of the key variables,
we set the default runtime of the workflow as 115 hours
to execute on a c5.9xlarge VM. In each study, we vary one
parameter at a time and keep others as default.

7.5.1 Varying memory footprint

We compare FarSpot with HotSpot and LSTMSpot under the
loose deadline requirement while varying the memory foot-
print (4GB-64GB) to illustrate the effectiveness of FarSpot,
further figuring out its correlation with an application’s
memory footprint. Fig. 9(a) and 9(b) denote the average
monetary cost and execution time optimization results of
the compared algorithms on our simulation. All the results
are normalized to Baseline. The number of migration of the
compared algorithms is also plotted as Fig.9(c).

First, each of these three approaches have a markedly
lower monetary cost than merely utilizing an on-demand

instance. Specifically, FarSpot is capable of further lowering
the average cost compared to both LSTMSpot and HotSpot,
outdoing them by 15%-42% when increasing the data size.
Although the average cost of FarSpot and that of LSTMSpot
stay relatively stable, the range of that of LSTMSpot grows
larger and larger as the memory footprint increases, even
reaching 20% for a 64GB memory footprint.

Further, each approach increases the execution time rela-
tive to Baseline, but only FarSpot and LSTMSpot can satisfy
the deadline requirement under any circumstance. HotSpot
may not be able to ensure user goals when the memory
footprint is lower than 16GB. In specific, the execution
time of LSTMSpot decreases from 4.9x to 1.7x of that of
Baseline while HotSpot reduces it from 16.1x to 2.1x of
that of Baseline; FarSpot lessens the runtime compared to
Baseline greatly by 65% when the memory footprint changes
from 4GB to 64GB. Also, each method presents a slightly
downward trend as the memory footprint grows.

Since HotSpot always computes the cost-efficiency based
on the historical spot price without taking future price into
account, HotSpot is likely to migrate so many times (up
to 339) in order to recoup its transaction cost when the
memory footprint is small (less than 32GB). It will not only
incur additional overheads, but also affect the coherence
of the application seriously. As for LSTMSpot, although it
adopts FarSpot’s migration policy, its prediction accuracy is
pretty low compared with our VWH model. Thus, it may
assign unfavorable subdeadlines for tasks and make wrong
migration decisions frequently, thereby bringing about addi-
tional cost as well. However, note that all the three methods
migrate less frequently and finish the execution greatly
ahead of deadline when the memory footprint gets bigger
(more than 16GB). That is determined by their migration
policies. Their choices for new server are narrowed down

11

since they all don’t migrate to a VM with smaller memory
than an application’s memory footprint. Generally, the big-
memory instances also possess more vCPUs and are more
expansive than the smaller ones, that is, execute jobs faster
and lead to more cost.

7.5.2 Changing deadline requirement

We compare FarSpot with HotSpot and LSTMSpot with the
fix size of memory footprint (4GB) under divers deadline
requirements to illustrates its correlation with the dead-
line requirement. Fig. 10(a) and 10(b) denote the average
monetary cost and execution time optimization results of
the compared algorithms on our simulation. All the results
are normalized to Baseline. The number of migration of
the compared algorithms is also plotted as Fig.10(c). Since
HotSpot is not aware of the job’s deadline, we will not plot
the results of it in these figures.

To begin with, the monetary cost of FarSpot stays
relatively stable, outperforming Baseline by about 35%.
However, LSTMSpot presents downward trends while the
deadline is tightened, outstripping Baseline by 43% under
the loose deadline requirement and around 41% under the
tight deadline requirement, respectively. Nonetheless, the
maximum cost of LSTMSpot becomes larger and larger. It
can even climb up to nearly 60% when the deadline is
strict. HotSpot can only outdo Baseline by 46% under any
requirement.

Further, the execution time of FarSpot, LSTMSpot, and
HotSpot are 4.9x, 5.0x, 16.1x of that of Baseline, respectively,
under the loose deadline requirement. In addition, the run-
time of FarSpot and LSTMSpot both show declining trends
with tightening the deadline, going down to as low as 1.9x
of that of Baseline under the strict deadline requirement.
That is, the execution time of these two approaches are de-
clining while narrowing the deadline. Importantly, FarSpot
and LSTMSpot can meet the deadline requirements while
HotSpot cannot make it.

Fig. 10(c) gives us information to account for these
simulation results. The downtime incurred by migration
may lead to applications’ timeout. Thus, all of the three
approaches adaptively cut down migration in order to
execute applications on time. Notwithstanding, HotSpot
and LSTMSpot still perform more migrations than FarSpot.
As for LSTMSpot, numerous inappropriate migrations can
explain its increasing range of cost. This phenomenon can
be attributed to its low accuracy on price prediction.

8 CONCLUSION AND FUTURE WORK

To reduce the monetary cost with little performance degra-
dation in executing long-running HPC applications, this pa-
per presents FarSpot, a framework that can provide precise
spot price forecast and then automatically select and migrate
to new spot instances when the benefit outweighs cost. We
first analyze the benefits and necessity of VM migrations
in EC2’s spot market. Then we construct our VWH model
by combining RF model and LightGBM to predict the spot
prices. We next come up with a cost-aware deadline dis-
tribution algorithm based on the price prediction from the
VWH model. Furthermore, we propose an effective migra-
tion policy for making migration decision. After that, we
carry out experiments to evaluate the prediction accuracy
of our VWH model. Finally, we conduct simulations on

FarSpot using NAS Parallel Benchmarks. The experimental
results show that FarSpot is able to save user’s budget as it
reduces the monetary cost by 32% on average (up to 37%)
compared to the state-of-the-art algorithms [35] , and it can
ensure the performance of applications and user goals.

As future work, we are planning to apply FarSpot
on more prevalent cloud computing platforms with spot
instances, such as Windows Azure, Alibaba Cloud, and
Tencent Cloud, to evaluate the generality of our techniques.

ACKNOWLEDGMENTS

This work is supported by the National Natural Science
Foundation of China (No. 62172282, 61802260, 62072311,
61972259, 62122056 and U2001212), Guangdong Basic and
Applied Basic Research Foundation (No. 2020B1515120028,
2019B151502055), Guangdong NSF 2019A1515012053, the
Shenzhen Science and Technology Foundation (No.
JCYJ20210324094402008, JCYJ20210324093212034) and Ten-
cent “Rhinoceros Birds” - Scientific Research Foundation for
Young Teachers of Shenzhen University.

REFERENCES

[1] O. Agmon Ben-Yehuda, M. Ben-Yehuda, A. Schuster, and
D. Tsafrir. Deconstructing amazon ec2 spot instance pric-
ing. TEAC, pages 1–20, 2013.

[2] H. Al-Theiabat, M. Al-Ayyoub, M. Alsmirat, and M. Ald-
wair. A deep learning approach for amazon ec2 spot price
prediction. In AICCSA, pages 1–5, 2018.

[3] S. Alkharif, K. Lee, and H. Kim. Time-series analysis
for price prediction of opportunistic cloud computing
resources. In EDB, pages 221–229, 2018.

[4] S. Angra and S. Ahuja. Machine learning and its applica-
tions: A review. In ICBDAC, pages 57–60, 2017.

[5] M. Baughman, C. Haas, R. Wolski, I. Foster, and K. Chard.
Predicting amazon spot prices with lstm networks. In
ScienceCloud, pages 1–7, 2018.

[6] L. Breiman. Random forests. Machine learning, pages 5–32,
2001.

[7] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose,
and R. Buyya. Cloudsim: a toolkit for modeling and sim-
ulation of cloud computing environments and evaluation
of resource provisioning algorithms. Software: Practice and
experience, pages 23–50, 2011.

[8] M. Chhetri, M. Lumpe, Q. Vo, and R. Kowalczyk. On
forecasting amazon ec2 spot prices using time-series de-
composition with hybrid look-backs. In EDGE, pages 158–
165, 2017.

[9] V. Chittora and C.P. Gupta. Dynamic spot price forecasting
using stacked lstm networks. In ICISS, pages 1080–1085,
2020.

[10] A. Criminisi, J. Shotton, and E. Konukoglu. Decision
Forests: A Unified Framework for Classification, Regression,
Density Estimation, Manifold Learning and Semi-Supervised
Learning, pages 81–227. 2012.

[11] Amazon EC2. Spot Fleet. https://go.aws/3GCE5IW, 2021.
[12] D. Fernando, J. Terner, K. Gopalan, and P. Yang. Live

migration ate my vm: Recovering a virtual machine after
failure of post-copy live migration. In IEEE INFOCOM
2019, pages 343–351, 2019.

[13] X. Gao, C. Shan, C. Hu, Z. Niu, and Z. Liu. An adaptive
ensemble machine learning model for intrusion detection.
IEEE Access, pages 82512–82521, 2019.

[14] Y. Gong, B. He, and J. Zhong. Network performance aware
mpi collective communication operations in the cloud.
TPDS, pages 3079–3089, 2013.

[15] Y. Gong, B. He, and D. Li. Finding constant from change:
Revisiting network performance aware optimizations on
iaas clouds. In SC, pages 982–993, 2014.

https://go.aws/3GCE5IW

12

[16] Y. Gong, B. He, and AC. Zhou. Monetary cost optimiza-
tions for mpi-based hpc applications on amazon clouds:
checkpoints and replicated execution. In SC, pages 1–12,
2015.

[17] A. Gupta, P. Faraboschi, F. Gioachin, L. Kale, R. Kaufmann,
B. Lee, V. March, D. Milojicic, and C. Suen. Evaluating
and improving the performance and scheduling of hpc
applications in cloud. TCC, pages 307–321, 2016.

[18] AJ. Hasan and M. Hammad. Spot hopping: Increasing
reliability and reducing cost. IJCDS, pages 1237–1250,
2020.

[19] S. Hochreiter and J. Schmidhuber. Long short-term mem-
ory. Neural Comput., page 1735–1780, 1997.

[20] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye,
and T. Liu. Lightgbm: A highly efficient gradient boosting
decision tree. In NIPS, page 3149–3157, 2017.

[21] V. Khandelwal, A.K. Chaturvedi, and C.P. Gupta. Amazon
ec2 spot price prediction using regression random forests.
TCC, pages 59–72, 2020.

[22] H. Liu, H. Jin, X. Liao, C. Yu, and C. Xu. Live virtual
machine migration via asynchronous replication and state
synchronization. TPDS, pages 1986–1999, 2011.

[23] H. Liu, R. Yang, and Z. Duan. Wind speed forecasting
using a new multi-factor fusion and multi-resolution en-
semble model with real-time decomposition and adaptive
error correction. Energy Convers. Manag., page 112995,
2020.

[24] X. Liu, J. Jin, W. Wu, and F. Herz. A novel support
vector machine ensemble model for estimation of free lime
content in cement clinkers. ISA Trans., pages 479–487, 2020.

[25] Z. Liu, X. Wang, Q. Zhang, and C. Huang. Empirical mode
decomposition based hybrid ensemble model for electrical
energy consumption forecasting of the cement grinding
process. Measurement, page 314–324, 2019.

[26] M. Malawski, G. Juve, E. Deelman, and J. Nabrzyski. Algo-
rithms for cost-and deadline-constrained provisioning for
scientific workflow ensembles in iaas clouds. FGCS, pages
1–18, 2015.

[27] A. Marathe, R. Harris, D. Lowenthal, B. De Supinski,
B. Rountree, and M. Schulz. Exploiting redundancy for
cost-effective, time-constrained execution of hpc applica-
tions on amazon ec2. In HPDC, pages 279–290, 2014.

[28] M. Mazzucco and M. Dumas. Achieving performance
and availability guarantees with spot instances. In HPCC,
pages 296–303, 2011.

[29] A. K. Mishra, A. Kesarwani, and D. K. Yadav. Short term
price prediction for preemptible vm instances in cloud
computing. In I2CT, pages 1–9, 2019.

[30] M. Naghshnejad and M. Singhal. Adaptive online runtime
prediction to improve hpc applications latency in cloud.
In CLOUD, pages 762–769, 2018.

[31] NASA. NPB. https://go.nasa.gov/2TRqn18, 2021.
[32] Roshni Pary. New amazon ec2 spot pricing model: Simpli-

fied purchasing without bidding and fewer interruptions.
https://amzn.to/3hS3FxR, 2018.

[33] L. Rokach. Ensemble-based classifiers. Artificial intelligence
review, pages 1–39, 2010.

[34] SAS. Machine learning: What it is and why it matters.
https://bit.ly/3hVoc4H, 2021.

[35] S. Shastri and D. Irwin. Hotspot: Automated server hop-
ping in cloud spot markets. In SoCC, page 493–505, 2017.

[36] S. Shastri and D. Irwin. Cloud index tracking: Enabling
predictable costs in cloud spot markets. In SoCC, page
451–463, 2018.

[37] S. Subramanya, T. Guo, P. Sharma, D. Irwin, and P. Shenoy.
Spoton: A batch computing service for the spot market. In
SoCC, page 329–341, 2015.

[38] S. Subramanya, A. Rizk, and D. Irwin. Cloud spot markets
are not sustainable: The case for transient guarantees. In
HotCloud, page 13–18, 2016.

[39] M. Taifi, J. Shi, and A. Khreishah. Spotmpi: A framework
for auction-based hpc computing using amazon spot in-
stances. In ICA3PP, pages 109–120, 2011.

[40] F. Xu, H. Zheng, H. Jiang, W. Shao, H. Liu, and Z. Zhou.
Cost-effective cloud server provisioning for predictable
performance of big data analytics. TPDS, pages 1036–1051,
2019.

[41] H. Zhao, M. Pan, X. Liu, X. Li, and Y. Fang. Optimal
resource rental planning for elastic applications in cloud
market. In IPDPS, pages 808–819, 2012.

[42] A. C. Zhou and B. He. Transformation-based monetary
costoptimizations for workflows in the cloud. TCC, pages
85–98, 2014.

Amelie Chi Zhou is currently an Assistant
Professor in Shenzhen University, China. Be-
fore joining Shenzhen University, she was a
Postdoc Fellow in Inria-Bretagne research cen-
ter, France. She received her PhD degree in
2016 from School of Computer Engineering,
Nanyang Technological University, Singapore.
Her research interests lie in cloud computing,
high performance computing, big data process-
ing and resource management.

Jianming Lao is currently working toward the
B.S. degree in the College of Computer Science
and Software Engineering, Shenzhen University,
China. His research interests focus on high per-
formance computing.

Zhoubin Ke is currently working toward the
B.S. degree in the College of Computer Science
and Software Engineering, Shenzhen University,
China. His research interests focus on high per-
formance computing.

Yi Wang is currently a professor in the College
of Computer Science and Software Engineer-
ing, Shenzhen University, China. He received
the BE and ME degrees in electrical engineering
from the Harbin Institute of Technology, China,
in 2005 and 2008, respectively, and the PhD de-
gree in computer science from the Department
of Computing, the Hong Kong Polytechnic Uni-
versity, in 2011. His research interests include
embedded systems, non-volatile memory, and
real-time scheduling for multi-core systems.

Rui Mao is currently a professor and a vice dean
in the College of Computer Science and Soft-
ware Engineering, Shenzhen University, China.
He received his BS and MS degrees in com-
puter science from the University of Science and
Technology of China, China, in 1997 and 2000,
respectively, and the PhD degree in computer
science from the University of Texas at Austin,
USA, in 2007. His research interests include uni-
versal data management and analysis in metric
space, and high performance computing.

https://go.nasa.gov/2TRqn18
https://amzn.to/3hS3FxR
https://bit.ly/3hVoc4H

	Introduction
	background and preliminary studies
	Cloud Spot Market
	Ensemble Learning Methods

	Motivation and design overview
	Motivation
	Prediction Models
	Migration Policy

	Design Overview

	Ensemble-based Predictor for Spot Prices
	Basics of LightGBM and RF Models
	LightGBM
	Random Forest (RF)

	Combining LightGBM and RF Models

	The deadline distribution policy
	Elemental definition
	The Subdeadline Assigning Algorithm

	Selection and Migration Policy
	Initial Instance Selection
	Migration Policy
	Migration cost
	Anticipated saving

	Evaluation
	Implementation Details
	Experimental setup
	Applications
	Comparisons
	Configuration

	Prediction accuracy of FarSpot
	Simulation results
	Sensitivity studies
	Varying memory footprint
	Changing deadline requirement

	Conclusion and Future Work
	Biographies
	Amelie Chi Zhou
	Jianming Lao
	Zhoubin Ke
	Yi Wang
	Rui Mao

