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ABSTRACT
Graph processing is a popular computing model for big data

analytics. Emerging big data applications are often main-

tained inmultiple geographically distributed (geo-distributed)

data centers (DCs) to provide low-latency services to global

users. Graph processing in geo-distributed DCs suffers from

costly inter-DC data communications. Furthermore, due to

increasing privacy concerns, geo-distribution imposes di-

verse, strict, and often asymmetric privacy regulations that

constrain geo-distributed graph processing. Existing graph

processing systems fail to address these two challenges. In

this paper, we design and implement PGPregel, which is an

end-to-end system that provides privacy-preserving graph

processing in geo-distributed DCs with low latency and high
utility. To ensure privacy, PGPregel smartly integrates Dif-

ferential Privacy into graph processing systems with the

help of two core techniques, namely sampling and combin-
ers, to reduce the amount of inter-DC data transfer while

preserving good accuracy of graph processing results. We

implement our design in Giraph and evaluate it in real cloud

DCs. Results show that PGPregel can preserve the privacy

of graph data with low overhead and good accuracy.
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1 INTRODUCTION
Graph processing is a popular computing model to perform

big data analytics for a wide range of applications. With the

ever increasing sizes of data, many big data applications need

to analyze large-scale graph data generated and maintained

globally. For example, the social network graph at Facebook

has over one trillion edges [14, 63]. In order to provide re-

liable and low-latency services to the users, Facebook has

built multiple geographically distributed (geo-distributed)

data centers (DCs) tomaintain andmanage those data. To run

graph processing algorithms on top of such data, for exam-

ple to study the importance of Facebook users using recom-

mendation algorithms, coordination (e.g., data exchange) is

needed amongmultiple geo-distributed DCs. Geo-distributed

data communication leads to two challenges which make

existing graph processing engines inefficient or even invalid.

First, due to the geo-distribution of graph data, data pri-

vacy has become an important concern that casts doubts

on the utility of graph processing systems given both the

high expectations on their performances and the diversity

of the legal personal data protection frameworks around the

world. Many countries and regions have strict laws and reg-

ulations to protect the privacy of personal data. For example,

the states of the European Union (EU) enforces the General

Data Protection Regulations (GDPR) [18] to protect personal

data of individuals living in the EU. According to GDPR,

which is considered as the most comprehensive privacy pro-

tection regulation to date, it is permitted and legal to transfer
personal data out of EU only when the target country has

“adequate” level of data protection [16]. However, different

countries can have different views on the importance of data

https://doi.org/10.1145/3542929.3563474
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Figure 1 Privacy and data protection restrictions of 54 coun-
tries (Forrester’s data privacy heatmap released in 2021 [28]).

privacy. Figure 1 shows the different levels of data privacy

protection in 54 countries around the world. As a result, it is

illegal for international companies to transfer its user data

collected in the EU to the US DCs [17] without protection,

which casts new challenge to geo-distributed data analytics.

Although the data transferred between DCs during geo-

distributed graph processing may not contain identifiable

information (e.g., for PageRank it consists of a sequence

of rank values), it still needs to be protected in order to

thwart the attacks, well-known in the privacy-preserving

data publishing literature, that exploit aggregated informa-

tion [24] (e.g., reconstruction attacks [20], membership in-

ference attacks [36, 60]). Most existing graph processing

systems for geo-distributed DCs have overlooked the pri-

vacy issue [37, 72]. Although there have been some privacy-

preserving systems for applications such as stream process-

ing [56] and machine learning [2], these systems cannot

be easily adapted to graph applications which have differ-

ent computation and communication patterns. On the other

hand, although privacy-preserving graph publishing can be

used to protect the privacy of individuals [19, 35, 38, 46, 47],

there still lacks an end-to-end solution which can preserve

graph data privacy during geo-distributed execution without

modifying the applications.

Second, geo-distributed graph processing suffers from

costly inter-DC data communication due to scarce wide area

network (WAN) resources. Our measurements on real cloud

DCs show that inter-DC network bandwidths can be lower

than one tenth of the intra-DC network bandwidths (see

Section 2). On the other hand, geo-distributed graph process-

ing often leads to large amounts of inter-DC data transfers.

For example, when running PageRank on the Twitter graph

using the real geographical distribution of Twitter users [62],

over 70% of the total communication are inter-DC. Thus, it

is important to reduce inter-DC data transfer sizes to effi-

ciently perform geo-distributed graph data analytics. More

importantly, designing privacy-preserving techniques for

geo-distributed graph processing should take into considera-

tion the large amounts of inter-DC data communications to

guarantee low latency for the applications.

Motivated by the above, our goal in this paper is to design

PGPregel, a privacy-preserving graph processing system for

geo-distributed DCs, hence, a Private Geo-distributed Pregel.

Although the large body of protection-through-encryption

techniques such as structured encryption [30, 64, 74], secure

multi-party computation (MPC) [26, 31], (somewhat) fully

homomorphic encryption (FHE) (e.g., [15]), or partially ho-

momorphic encryption (PHE) [57] can be used to preserve

data privacy, they usually result in high latency and band-

width consumption [27], harming dramatically the perfor-

mances of graph processing algorithms. Differential Privacy
(DP) [23] protects the privacy of individuals by adding ran-

dom noise to aggregated data. Satisfying it by perturbing the

outgoing inter-DC messages would allow DCs to perform all

computations over cleartext (perturbed) data, thus resulting

in generic and lightweight graph applications without jeop-

ardizing privacy guarantees. However, naively integrating

DP into existing graph processing systems would add too

much noise and harm the utility of graph processing results.

Thus, the main technical problem addressed by this work is

how to practically integrate Differential Privacy into graph
processing systems for good utility and low latency.
We address this problem using two techniques. First, we

employ sampling at the vertex level to reduce the number of

outgoing messages and thus reducing inter-DC data trans-

fer and hence system latency. Sampling additionally bene-

fits utility through its well-known amplification effect for

DP [1, 6, 9, 39, 45, 66, 67]. We rigorously prove that our sam-

pling technique can amplify the privacy budget and as a

result improve the utility of our graph processing system.

Second, we use combiners to combine outgoing messages at

the DC level to further reduce inter-DC data transfer. Com-

biners also benefit DP in two aspects. For one thing, with

a smaller number of combined messages, we can assign a

larger privacy budget to each message and hence improve

the accuracy of graph processing results. For another, ag-

gregated messages (e.g., summed up) reduce the impact of

the differentially private perturbation, further increasing

the accuracy of results. We identify and make use of the

multi-level and asymmetric feature of privacy constraints

in geo-distributed DCs to perturb only the messages sent

to DCs with lower privacy levels and consequently further

improve system utility.

We focus on recommendation algorithms in this paper,

which are an important type of graph applications usually

involving global data distributions [25, 59]. We evaluate the

effectiveness of PGPregel using four recommendation algo-

rithms on real graphs and real user distributions [62]. Results

show that PGPregel can preserve the privacy of graph data in
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geo-distributed DCs with low overhead and good accuracy.

To summarize, we make the following contributions.

• We present an end-to-end system named PGPregel specif-
ically tailored for differentially private geo-distributed

graph processing. To the best of our knowledge, this is the

first study considering system latency, utility and privacy

at the same time for geo-distributed graph processing.

• We present sampling and combiners techniques to make

DP practical in our system. The two techniques can ben-

efit both of our two goals: mitigating the impact of dif-

ferentially private perturbation on system utility without

incurring significant overhead.

• PGPregel is the first system that integrates privacy zones

into large-scale graph processing, which is inspired from

GDPR. Our extensive experiments clearly demonstrate

the effectiveness and efficiency of PGPregel. We have in-

tegrated our design into Giraph and open sourced it at:

https://github.com/PGPregel/PGPregel.

2 BACKGROUND AND MOTIVATION
2.1 Geo-Distributed Data Centers
We consider several DCs owned by a single entity (e.g., a

social network provider) and distributed globally over dis-

tinct geographical areas possibly ruled by distinct privacy

laws. We consider as a geographical area the areas that share

the same legal right-to-privacy framework. Privacy laws can

constrain many aspects regarding personal data, such as the

collection, storage and processing of the data. In this work,

we mainly focus on the aspect regarding data transfer across

DCs [16]. The privacy laws allow data transfers from a DC
with lower (i.e., less strict) privacy protection level to DCs with
higher protection levels, but not the other way around.

The entity that owns the multiple DCs can perform global

data analytical jobs that require coordination between the

DCs. Data communication between geo-distributed DCs usu-

ally goes through the WAN, which has low bandwidth and

high latency compared to network performance within a

single DC. For example, our measurements on both Ama-

zon EC2 and Windows Azure clouds show that the network

bandwidth within a single DC can be 7-22x higher than that

between geo-distributed DCs.

2.2 Graph Data Analytics
A number of graph processing systems such as Pregel [51]

and PowerGraph [32] have been proposed to efficiently per-

form graph data analytics. Most of these systems follow the

“think-as-a-vertex” philosophy and encode graph computa-

tion as vertex programs which run in parallel and communi-

cate through edges. Vertices iteratively update their states

according to the messages received from neighbors. Thus,
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Figure 2 Number of edges between DCs in the Twitter graph,
where vertices are located in eight different DCs. SA, AF,
OC, NA, AS and EU represent DCs in South America, Africa,
Oceania, North America, Asia and Europe, respectively.

efficient communication between vertices and their neigh-

bors is important to performance of graph processing. In this

paper, we focus on the Pregel [51] model, which has a clear

abstraction based on message passing and thus can ease our

discussion on data communication optimizations.

With the global distribution of graph data sets, inter-DC

data communications play an important role in geo-distributed

graph processing. We study the distributions of high degree

vertices (> 10, 000 followers) in the Twitter graph using real

geographic locations of users [41]. Specifically, we cluster

user locations into eight DCs, including South America, USA

West, USA East, Africa, Oceania, North America, Asia and

Europe. Figure 2 shows the number of edges between differ-

ent pairs of DCs, where the diagonal cells represent intra-DC

edges and the rest represent inter-DC edges. The number of

edges can reflect the amount of data transfer between DCs.

We find that over 75% are inter-DC edges. This leads to two

technical challenges to geo-distributed graph processing.

Challenge 1: Preserving privacy with good utility. As
mentioned above, geo-distributed DCs usually have differ-

ent rules and regulations on data privacy protection. This

casts special constraints to inter-DC data transfer. Viola-

tions of data privacy laws and regulations can lead to huge

fines [17]. Thus, it is important for future graph process-

ing systems to preserve data privacy in geo-distributed DCs.

One straightforward way to achieve this goal is to forbid

any inter-DC data communication that violates privacy re-

quirements. However, this can greatly harm the accuracy of

graph processing results due to the large amount of inter-

DC data communications. Another natural approach could

be to encrypt messages before they leave their DCs. For

example, (somewhat) fully homomorphic encryption (FHE)

schemes [8, 13, 44] support (limited or no) computations over

encrypted data. However, this does not work for our large-

scale geo-distributed graph processing due to the following

reasons. First, FHE is impractically expensive because all

https://github.com/PGPregel/PGPregel
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computations including the ones performed within each DC

have to execute over FHE data. A typical graph consists of

up to over one billion edges and tenths of millions of vertices.

As the search time on a small FHE dataset is in the order of

hundreds of seconds [15], the overhead of FHE applied to

graph processing is huge. Second, the bandwidth cost (aggra-

vated by WAN) is unacceptable under FHE. FHE is known to

suffer from large expansion factors (10
6
expansion factor is

not rare [27]). Finally, applying FHE is not general enough

because each algorithm should be specifically translated to

a boolean circuit with a minimal multiplicative depth.

In this paper, we adopt differential privacy (DP) which

allows computations over cleartext data while still satisfying

sound privacy guarantees. A straightforward way of apply-

ing DP is to perform differentially private perturbation on

the messages exchanged during graph processing. However,

this leads to unacceptable accuracy loss because of the nu-

merous inter-DC data communications. The challenge thus

translates into making graph applications satisfy differen-

tial privacy without thwarting the quality of their results.

Compared to encryption-based methods, the overhead of

our DP-based approach is negligible, leading to generic and

lightweight distributed algorithms, at the cost of an approxi-

mation in results.

Challenge 2: Improving graph processing perfor-
mance. Due to the limited inter-DC network bandwidth,

the large amount of inter-DC data communications in geo-

distributed graph processing have become the major per-

formance bottleneck. To optimize system performance, one

straightforward idea is to avoid inter-DC data communica-

tions as much as possible, which however can impact the

accuracy of graph processing results and thus contradicts

the utility optimization goal. Some studies perform mes-

sage rerouting to make usage of high bandwidth links in

geo-distributed DCs to improve system performance [77].

However, this may not work when considering privacy con-

straints. Due to the complicated and irregular data commu-

nication patterns in graph processing, it is non-trivial to

improve graph processing performance considering both

privacy and utility.

3 PROBLEM OVERVIEW
In this work, we consider the problem of executing targeted

applications over a large graph partitioned on multiple DCs

located in distinct geographical areas. The goal is to satisfy

data privacy requirements while keeping low latency and

high utility. In the following, we formally define the problem.

3.1 Data Model
Consider processing a dataset partitioned across multiple

geo-distributed DCs and the full dataset is a single directed

and unweighted graph G = (V, E), where V is a set of

vertices and E is a set of edges. The application partitions the

graph into 𝑘 graph partitions G𝑖 = (V𝑖 , E𝑖 ), whereV𝑖 ⊂ V ,

E𝑖 ⊂ E, V𝑖 ∩ V𝑗 = ∅ and E𝑖 ∩ E 𝑗 = ∅ if 𝑖 ≠ 𝑗 . Inter-DC

edges connect two nodes belonging to different partitions.

We consider in that case that a (directed) inter-DC edge

belongs to the set of edges of the partition of the starting

node: (𝑢, 𝑣) ∈ E𝑖 if𝑢 ∈ V𝑖 . For simplicity and without loss of

generality, we assume in the following that there is a single

DC per geographical area and we consider that each DC

holds a single partition of G.

3.2 Targeted Graph Applications
In this work, we target four graph algorithms that are widely

adopted in recommendation systems, including PageRank [55],

HITS [40], SALSA [42] and ALS [73].

PageRank was originally proposed by Google to measure

the importance of different webpages according to the link

relationship between the pages. At each graph processing

iteration, each vertex updates its importance (i.e., rank value)

using the rank values of its neighbors from the last iteration.

HITS is another algorithm used to rank webpages for a

topic search. Given a topic search, the set of highly relevant

webpages are called Authorities. Webpages not very relevant

but pointing to many related authorities are called Hubs. The
algorithm strives to obtain authority and hub scores for each

vertex. In each iteration, the two scores are updated in a

mutually recursive manner. We normalize the scores to [1, 2]
instead of [0, 1] as in the original algorithm [40] to achieve

faster convergence while keeping the same ranking.

SALSA has been shown to be one of the most effective

link analysis algorithms [54] and has been applied in social

network recommendations [34]. Similar to HITS, SALSA

divides webpages into hubs and authorities and constructs a

bipartite graph by putting hubs on one side and authorities

on the other. It has two main differences fromHITS. First, the

authority/hub score of each vertex in SALSA is determined by

the authority/hub scores of other vertices, while HITS uses

“mutual enforcement” to update those values. Second, SALSA

updates the scores similar to PageRank, by performing two

independent random walks (i.e., a hub walk and an authority

walk) on the neighborhood graph.

ALS is a popular matrix factorization algorithm that tries

to make item recommendations to users given sparse user-

item ratings. Essentially, ALS decomposes a rating matrix

into the product of two lower dimensional matrices to cap-

ture the potential factors of users and items. The twomatrices

are alternatively updated in multiple iterations.

For simplicity, we overload the terminology when the

semantics is clear from the context: PageRank may refer to

the complete PageRank algorithm or the function applied at

each vertex, and the same holds for HITS, SALSA and ALS.
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3.3 Quality Measures
Low latency and high utility are our two main goals and we

measure the optimization quality of the two goals as follows.

Latency measure. As inter-DC data communication is

the main performance bottleneck in geo-distributed graph

processing, we use the WAN usage consumed during graph

processing to measure system latency. To obtain this value,

we simply aggregate the size of every message transmitted

between different DCs. The size of a message is determined

by the data contained in the message and can be estimated

using TCP data packets.

Utility measure. We quantify the impact of our tech-

niques on the utility of the targeted graph applications based

on a general error-quantification measure, i.e., the average

relative error (denoted 𝐴𝑅𝐸), and set-based measures specif-

ically related to recommendation systems, i.e., the precision

and recall of top-𝑘 values retrieved. Note that for a top-𝑘 list,

the number of false positives is equal to the number of false

negatives, and consequently the precision and the recall are

equal. As a result we only measure the precision below.

We measure 𝐴𝑅𝐸 by comparing the graph processing re-

sults of our system with those from Pregel (denoted as base-

line). That is, 𝐴𝑅𝐸 =
∑

𝑣∈V | (𝑚𝑣−𝑏𝑣 )/𝑏𝑣 |
|V | , where 𝑏𝑣 is the base-

line value of vertex 𝑣 and𝑚𝑣 is the result of vertex 𝑣 obtained

using our system. For precision, we sort the baseline results

and the results of our system separately, and compute the

true positives (denoted 𝑇𝑃 ) and the false positives (denoted

𝐹𝑃 ). Precision is then defined as 𝑃 = 𝑇𝑃
𝑇𝑃+𝐹𝑃 .

3.4 Privacy
PGPregel adapts specifically to the existing diversity of the

privacy protection levels thatmust be enforced by geo-distributed

DCs. In a nutshell, it protects the structural information of

the sub-graph of any DC that communicates to a less trusted

DC. PGPregel satisfies 𝜖-edge differential privacy [35], a vari-

ant of differential privacy [21] dedicated to graph data, by

allowing each DC to inject noise into intermediate results

before they are transmitted. Loosely speaking, 𝜖-edge differ-

ential privacy guarantees that no single edge, e.g., social link

between two individuals, significantly impacts the protected

information communicated by a DC to a less trusted DC.

3.4.1 Threat model. Despite belonging to a single organiza-

tion, the DCs are physically located in distinct geographical

areas. This results in various and possibly asymmetric pri-

vacy requirements across DCs (see Figure 1). We capture

this diversity using discretized and totally ordered privacy

levels
1
. When the privacy level of DC𝑖 is lower than (or equal

to) that of DC𝑗 , it represents the real-life situation where

1
PGPregel can be extended with more general trust models (e.g., a matrix

specifying the trust relationship between each pair of DCs).

the geographical area of DC𝑗 has privacy requirements com-

patible with those required by the area of DC𝑖 . DC𝑗 is thus

considered by DC𝑖 to be fully trusted. Otherwise, when the

privacy level of DC𝑖 is strictly higher than that of DC𝑗 , then

DC𝑗 is considered by DC𝑖 to be untrusted. More particularly,

DC𝑖 considers DC𝑗 to be honest-but-curious in that it does

not deviate from the algorithm but it may try to infer any

information that can be inferred for jeopardizing the privacy

guarantees (see Section 3.4.3). Note that since privacy levels

are totally ordered, the trust relationship is transitive.

3.4.2 Information Protected. PGPregel aims to protect struc-

tural information, i.e., vertices and edges, of local, intra-

DC, subgraphs. We make the following two usual security

assumptions. First, the edges that connect two subgraphs

stored at two distinct DCs, i.e., inter-DC edges, are already

known to the two connected DCs. We focus thus on the local,

intra-DC, structural information. Second, each DC protects

its subgraph with appropriate security measures (e.g., access

control, encryption at rest). We focus thus on the information

communicated from one DC to another during the execu-

tion of graph applications. This information consists of the

intermediate results of the graph application being executed.

Since this depends directly on the structural information

of the local subgraph, it must be protected accordingly in

order to avoid adversarial inferences and resulting privacy

breaches.

3.4.3 Edge Differential Privacy. To preserve data privacy, we
adopt the well-known 𝜖-edge-DP model [35] which essen-

tially aims at hiding the presence/absence of any single edge

in a graph (e.g., a social relationship in the context of social

networks). This model protects against attacks that aim at

inferring the existence of an edge in the sub-graph of the

communicating DC by exploiting the information communi-

cated across DCs (e.g., membership inference attacks [60]).

These are the usual protection guarantees of pure differential

privacy applied to the edges of the graph. We consider that

two graphs G = (V, E) and G′ = (V ′, E ′) are neighbors if G
is G′

with one edge difference, i.e.,V = V ′
and |E −E ′ | = 1.

Definition 1 (𝜖-edge-DP [35]). Let G1 and G2 be two
neighboring graphs. Let f be a randomized function and Im(f)
be its image (all possible outputs of f). If for all S ⊂ Im(f),

𝑃𝑟 [f(G1) ∈ S] ≤ 𝑒𝜖𝑃𝑟 [f(G2) ∈ S]
then f is said to satisfy 𝜖-edge-DP. 𝜖 is called privacy budget.
The smaller the budget, the better the privacy.

In this paper, f ∈ {𝑃𝑎𝑔𝑒𝑅𝑎𝑛𝑘, 𝐻𝐼𝑇𝑆, 𝑆𝐴𝐿𝑆𝐴,𝐴𝐿𝑆}. In or-

der to satisfy 𝜖-edge-DP, it is possible to perturb their output

based on the Laplace mechanism [22] parameterized with 𝜖

and their respective sensitivities. The sensitivity quantifies

the maximum impact of the presence/absence of any single

edge on the result of the function. We calculate below the
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(b) 𝑃 of bounded PageRank
Figure 3 Impact of upper bound on the accuracy of PageRank.

global sensitivities of the targeted applications. Denote G1

and G2 as two neighboring graph partitions.

• PageRank. For PageRank, the largest possible difference
of the rank value between any pair of neighboring graph

partitions is upper-bounded by the difference between the

maximum and the minimum rank values, namely max ∥
𝑃𝑎𝑔𝑒𝑅𝑎𝑛𝑘 (G1)−𝑃𝑎𝑔𝑒𝑅𝑎𝑛𝑘 (G2)∥1 < (𝑝𝑟𝑚𝑎𝑥−𝑝𝑟𝑚𝑖𝑛), where
𝑝𝑟𝑚𝑎𝑥 (resp. 𝑝𝑟𝑚𝑖𝑛) is the maximum (resp. minimum) rank

value. In theory, the maximum rank value is unbounded,

leading to an infinite global sensitivity. However in prac-

tice, a reasonable maximum upper bound can be set [12,

48, 69]. We experimentally show in Figure 3 using Pregel

and five real-world graphs that choosing reasonable upper

bounds leads to a bounded sensitivity without suffering

from a dramatic utility loss (detailed experimental setup

can be found in the evaluation section).

• HITS. Since the results of HITS are normalized, the largest

possible difference between any pair of neighboring graph

partitions is lower-bounded by 1 and upper-bounded by 2,

namely max ∥𝐻𝐼𝑇𝑆 (G1) − 𝐻𝐼𝑇𝑆 (G2)∥1 ≤ 1.

• SALSA. Similar to HITS, the results of SALSA are naturally

bounded between 0 and 1. Thus, we havemax ∥𝑆𝐴𝐿𝑆𝐴(G1)
− 𝑆𝐴𝐿𝑆𝐴(G2)∥1 ≤ 1.

• ALS. The results of ALS contain one matrix of users and

one matrix of items. We adopt the unbounded sensitivity

analyzed in existing study [29] for the two sets of results.

Given a privacy budget 𝜖𝑖 and the global sensitivitymax ∥
f(G1) − f(G2)∥1, satisfying 𝜖𝑖 -edge-DP requires perturbing

the output of the function by adding random noise sampled

from the Laplace distribution Lap(max ∥f(G1) −f(G2)∥1/𝜖𝑖 )
to the results. Finally, the self-composition properties of 𝜖-

DP [53] result in a consumption of the privacy budget that

is 1) linearly increasing with the number of perturbed out-

puts when the function takes as inputs overlapping graphs

(i.e., sequential composition) or 2) set to the maximum pri-

vacy budget used when the function takes as inputs disjoint

graphs (i.e., parallel composition).

4 DESIGN DETAILS OF PGPREGEL
PGPregel is designed to achieve differentially private graph

processing in geo-distributed DCs with low latency and high

utility. To achieve this goal, we propose two optimizations

including sampling and combiners to improve the accuracy

of differentially-private graph computations while reducing

the inter-DC data communication size. Figure 4 gives an

overview of our PGPregel model. Although most of our dis-

cussions focus on Pregel, the design ideas are general and

can be useful for other graph execution models [32].

4.1 Privacy Budget Allocation
To preserve DP, a privacy budget 𝜖 is given to the entire

graph application. The budget is further allocated to each

inter-DC message for differentially private perturbation. Re-

call that, the larger the budget, the lower the noise. Accord-

ing to the composition property of DP, we first distribute

𝜖 evenly among multiple graph processing iterations. Sec-

ond, we evenly distribute the budget of iteration 𝑖 (denoted

𝜖𝑖 ) to each DC. Finally, we further distribute 𝜖𝑖 to each out-

going message that needs protection. For PageRank, HITS

and SALSA, the sequential composition property is satisfied

among the messages and thus we evenly distribute 𝜖𝑖 among

them. For ALS where parallel composition is satisfied among

messages, the budget allocated to each of them equals to 𝜖𝑖 .

4.2 Sampling Technique
In large-scale graph processing, it is not always necessary to

transfer every message between vertices to obtain good accu-

racy. For example, in PageRank, the rank value of a vertex is

updated using the rank of its neighbors. Thus, dropping a few

messages from low-degree neighbors does not significantly

reduce the accuracy. Our experiments using PageRank and

LiveJournal graph on five DCs (detailed setup in Section 6)

show that, using random sampling to reduce the number of

inter-DC messages can greatly reduce the WAN usage with

good accuracy. For example, Figure 5 shows that reducing

the sampling rate from 1.0 to 0.5 results in precision losses

close to 30% and a WAN usage gain close to 50%, under the

setup of the figure. Further, as we will prove later, sampling

the edges amplifies the privacy budget and leads to satisfying

𝜖-edge-DP with less perturbation. Thus, it can benefit both

our low-latency and high-utility goals.

Given a graph application, we sample its inter-DC data

communications with a sampling probability 𝑝 . Users can

empirically decide or smartly learn the best sampling proba-

bility according to the trade-off between graph processing

accuracy and WAN usage. Although sampling only inter-

DC messages may introduce skewness to graph processing

results, Figure 2 shows that inter-DC messages are dominat-

ing in real geo-distributed graph applications. As a result,

sampling only inter-DC messages does not affect much the

accuracy. What’s more, the sampling technique can help im-

prove the accuracy of graph processing with its amplification
effect on the privacy budget.
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(a) Pregel (b) PGPregel

Figure 4 System overview. A message contains the content and the list
of receivers. For example, (𝑟1,5) means the message is sent to vertex 5
with a value of 𝑟1.
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Figure 5 Impact of sampling on the
quality of graph processing results us-
ing PageRank on LiveJournal graph.

The amplification effect of sampling onDPwas first sketched

and proved for the case when the privacy budget is 1 [61]. To

study the amplification effect in more general cases, we prove

Lemma 1, which expands the privacy budget 𝜖 from 1 to an

arbitrary value. In the following, 𝐴 is a random algorithm

which takes graphs as input.

Definition 2 (Algorithm 𝐴𝑝 ). Let 𝑝 ∈]0, 1[ and 𝐴 be
a random function that satisfies 𝜖-DP and G = (V, E) be a
graph. We define ET as a subset of E obtained by sampling
each element of E independently with probability 𝑝 (for all
𝑥 ∈ E, 𝑃𝑟 (𝑥 ∈ ET) = 𝑝)). If GT = (V, ET) then we define
𝐴𝑝 (G) = 𝐴(GT).

Lemma 1 (Amplification via sampling). If A satisfies
𝜖-DP, then for any 𝑝 ∈]0, 1[, 𝐴𝑝 satisfies 𝑝 (𝑒𝜖 − 1)-DP.

Proof. In the following, let us denote as 𝛿 the function

that samples any subset with independent sampling proba-

bility 𝑝 for any element of the input set (using the notation

from Definition 2, ET = 𝛿 (E)). For a given graph G, we
denote as G𝛿 its subgraph after the sampling of its edge set

𝐴𝑝 (G) = 𝐴(G𝛿 )). Let G = (V, E) and G′ = (V ′, E ′) be two
adjacent graphs. We assume here that E = E ′ ∪ {𝑥}.
Let now E ′

T be any subset of E ′
(E ′

T is a possible output

of 𝛿 (E ′)). Let us now denote ET = E ′
T ∪ {𝑥}. Because the

sampling of each element is independent, we have 𝑃𝑟 (𝛿 (E) =
ET) = 𝑝 · 𝑃𝑟 (𝛿 (E ′) = E ′

T) and 𝑃𝑟 (𝛿 (E) = E ′
T) = (1 − 𝑝) ·

𝑃𝑟 (𝛿 (E ′) = E ′
T). Thus,

𝑃𝑟 (𝛿 (E) = 𝛿 (E ′) |𝛿 (E ′) = E ′
T ) =

𝑃𝑟 (𝛿 (E) = E ′
T&𝛿 (E

′) = E ′
T )

𝑃𝑟 (𝛿 (E ′) = E ′
T )

=
(1 − 𝑝) · 𝑃𝑟 (𝛿 (E ′) = E ′

T )
2

𝑃𝑟 (𝛿 (E ′) = E ′
T )

= (1 − 𝑝) · 𝑃𝑟 (𝛿 (E ′) = E ′
T ).

Similarly, 𝑃𝑟 (𝛿 (E) ≠ 𝛿 (E ′) |𝛿 (E ′) = E ′
T) = 𝑝 · 𝑃𝑟 (𝛿 (E ′) =

E ′
T). Note that when the sampling event “𝛿 (E) ≠ 𝛿 (E ′)”

occurs, under the assumption that 𝛿 (E ′) = E ′
T , we know

that the two induced subgraphs G𝛿 and G′
𝛿
are adjacent

(because the only possible difference is the edge 𝑥 being part

of 𝛿 (E)).
Let us now consider any 𝑆 ⊂ 𝐼𝑚(𝐴). By definition,𝐴𝑝 (G) ∈

𝑆 if and only if 𝐴(G𝛿 ) ∈ 𝑆 . The same applies for 𝐴𝑝 (G′) and
𝐴(G′

𝛿
). Thus, 𝑃𝑟 (𝐴𝑝 (G) ∈ 𝑆 |𝛿 (E ′) = E ′

T) = 𝑃𝑟 (𝐴(G𝛿 ) ∈
𝑆) |𝛿 (E ′) = E ′

T).
As mentioned above, if 𝛿 (E ′) = E ′

T , then either G𝛿 = G′
𝛿

(with probability (1 − 𝑝)), or G𝛿 and G′
𝛿
are adjacent (with

probability 𝑝). Thus,

𝑃𝑟 (𝐴(G𝛿 ) ∈ 𝑆 |𝛿 (E ′) = E ′
T )

=(1 − 𝑝) · 𝑃𝑟 (𝐴(G𝛿 ) ∈ 𝑆 |𝛿 (E ′) = E ′
T |G𝛿 = G′

𝛿
)

+ 𝑝 · 𝑃𝑟 (𝐴(G𝛿 ) ∈ 𝑆 |𝛿 (E ′) = E ′
T |G𝛿 ≠ G′

𝛿
)

≤(1 − 𝑝) · 𝑃𝑟 (𝐴(G′
𝛿
) ∈ 𝑆) |𝛿 (E ′) = E ′

T )
+ 𝑝𝑒𝜖 · 𝑃𝑟 (𝐴(G′

𝛿
) ∈ 𝑆) |𝛿 (E ′) = E ′

T )
≤(1 + 𝑝 (𝑒𝜖 − 1)) · 𝑃𝑟 (𝐴(G′

𝛿
) ∈ 𝑆) |𝛿 (E ′) = E ′

T )

≤𝑒𝑝 (𝑒
𝜖−1) · 𝑃𝑟 (𝐴(G′

𝛿
) ∈ 𝑆) |𝛿 (E ′) = E ′

T ) .

as 1 + 𝑡 ≤ 𝑒𝑡 for any 𝑡 .

Thus we have 𝑃𝑟 (𝐴𝑝 (G) ∈ 𝑆 |𝛿 (E ′) = E ′
T) ≤ 𝑒𝑝 (𝑒

𝜖−1) ·
𝑃𝑟 (𝐴𝑝 (G′) ∈ 𝑆 |𝛿 (E ′) = E ′

T). From it we can conclude

𝑃𝑟 (𝐴𝑝 (G) ∈ 𝑆) =
∑︁

E′
T ⊂E′

𝑃𝑟 (𝐴𝑝 (G) ∈ 𝑆
⋂

𝛿 (E ′) = E ′
T )

=
∑︁

E′
T ⊂E′

𝑃𝑟 (𝐴𝑝 (G) ∈ 𝑆 |𝛿 (E ′) = E ′
T ) × 𝑃𝑟 (𝛿 (E ′) = E ′

T )

≤
∑︁

E′
T ⊂E′

𝑒𝑝 (𝑒
𝜖−1) · 𝑃𝑟 (𝐴𝑝 (G′) ∈ 𝑆 |𝛿 (E ′) = E ′

T )

× 𝑃𝑟 (𝛿 (E ′) = E ′
T )

≤𝑒𝑝 (𝑒
𝜖−1) ·

∑︁
E′
T ⊂E′

𝑃𝑟 (𝐴𝑝 (G′) ∈ 𝑆 |𝛿 (E ′) = E ′
T )

× 𝑃𝑟 (𝛿 (E ′) = E ′
T )

≤𝑒𝑝 (𝑒
𝜖−1) · 𝑃𝑟 (𝐴𝑝 (G′) ∈ 𝑆)
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which proves that 𝐴𝑝 satisfies 𝑝 (𝑒𝜖 − 1)-DP when E = E ′ ∪
{𝑥}. In the other case, the same proof applies, as the proba-

bility of G𝛿 and G𝛿′ being equals or adjacent are unchanged

(but this time under the assumption 𝛿 (E) = E𝑇 ). □

We prove Lemma 2, which shows that the amplification

effect of the sampling technique allows us to use a larger

budget to generate noises while preserving the same level of

differential privacy. The proof is straightforward.

Lemma 2. For any 𝑘 > 0, if A satisfies ln(𝑘 + 1)-DP and
𝜖 ∈]0, 𝑘 [, then 𝐴𝜖/𝑘 satisfies 𝜖-DP.

This is to say, if we sample the inter-DC messages with

probability 𝑝 = 𝜖/𝑘 , the original 𝜖-DP will still be satisfied

even if we use a bigger privacy budget, ln(𝑘 +1), for the sam-

pled messages. Using sampling together with DP results in

adverse impacts on quality: reducing the sampling rate both

decreases quality (see, e.g., Figure 5) and increases it (lower

noise magnitude – see Lemma 2). As a result, the quality of a

given algorithm does not necessarily vary uniformly with the

decrease of the sampling rate. We use empirical approaches

to learn the best sampling rate for different applications (see

Section 6.6). Our guideline is that most applications can bene-

fit from sampling. Even when sampling is disabled, PGPregel

still outperforms existing solutions.

4.3 Combiners
Similar to Pregel, we adopt combiners at each DC to com-

bine outgoing messages. The difference is that, combiners

in PGPregel are defined for pairs of DCs that are communi-

cating. For example, if DC A sends messages to two other

DCs B and C, then we deploy two combiners at DC A, each
responsible for combining inter-DC messages sent to DCs

B and C separately. The function of each combiner can be

defined by users according to the computation of graph al-

gorithms. For example, as shown in Figure 4b, the combine

operation for PageRank is to 1) sum up the rank values of

all combined messages and 2) combine the receivers of all

messages into a list. On receiving a combined message, the

target DC distributes the message to each receiver in the

list. The distribute operation is also application-dependent.

For example, for PageRank, the combined message is evenly

distributed to each receiver.

The main motivation of introducing combiners in PG-

Pregel is to enlarge the privacy budget allocated to inter-DC

messages and hence improve system utility. We define per-
turbed combiners which only combine messages that need

privacy protection. According to Section 4.1, we set one per-

turbed combiner for each pair of communicating DCs to have

the best benefit from the available privacy budget.

We can also combine inter-DC messages that do not need

protection using non-perturbed combiners to reduce WAN

Figure 6 Execution flow of PGPregel in one iteration. Shaded
modules are added/modified for PGPregel.

usage and hence system latency. However, doing so comes

with the cost of accuracy loss. To minimize the accuracy loss

introduced by combined data distribution, messages with

close values are assigned to the same combiner. We study the

impact of combine operation in Section 6.8, which shows that

setting the number of combiners to a relatively small number

can achieve both good accuracy and low latency. Thus, by

default, we set the number of non-perturbed combiners to

one between each pair of communicating DCs.

5 IMPLEMENTATION
We integrate PGPregel into Apache Giraph [4], an open-

sourced implementation of the Pregel model. Giraph adopts

the Hadoop execution engine to run distributed graph com-

putations using multiple workers. Each worker is assigned

with one partition of the graph and runs two stages in each it-

eration, namely the compute stage and communication stage.

Since Giraph is not privacy-aware, we made three changes

when implementing PGPregel: we 1) implemented DP re-

lated parameters and functions; 2) overwrote the combiner

module; and 3) implemented a sampling module. Figure 6

shows the execution flow of a PGPregel worker in one iter-

ation. In our experiments, we deploy one worker for each

DC. Users can also deploy multiple workers in one DC for

better parallelism, in which case a leader has to be chosen

for each DC to run the combiner and sampling modules. In

the following, we introduce details of the three changes.

DP parameters and functions. PGPregel takes a privacy
budget as input, which is then allocated to each iteration and

each worker using a budgetAlloc function before application

runs (see Section 4.1). A noiseGenerator is implemented to

sample noises from a Laplace distribution parameterized by

the allocated budget and global sensitivities of applications

(see Section 3.4.3).
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Table 1 Social and web graphs for PageRank, HITS and
SALSA

Real Graph Vertices Edges 𝛼𝑖𝑛 𝛼𝑜𝑢𝑡
LiveJournal (LJ) 4,847,571 68,993,773 2.26 2.51

Orkut (OT) 3,072,441 117,185,083 2.83 1.93

uk-2005 (UK) 39,454,746 936,364,282 1.65 2.98

it-2004 (IT) 41,290,682 1,150,725,436 1.58 2.82

Twitter (TW) 41,652,230 1,468,365,182 1.80 2.02

Sampling module. In the compute stage, vertices update

their values and generate messages to be sent out to their

neighbors. If a message is an inter-DC message, it first goes

through the sampling module which decides whether the

message will be passed on or not. We also implement a bud-
getAmplification function to calculate the amplified privacy

budget according to the sampling rate (see Section 4.3). The

amplified budget and sampled messages are then passed to

the combiner module for combine and perturbation.

Combiner module. We overwrote the combiner mod-

ule of Giraph for each worker to combine perturbed and

non-perturbed inter-DC messages separately. We redesigned

the message data structure for a combined message, which

includes a list of recipients in the target DC. A distribute
function is implemented for the worker in the target DC to

distribute the received message onto each recipient (i.e., a

vertex) in the list (see Section 4.3).

The DP, sampling and combiner modules are treated as

building blocks to PGPregel. When adopted for different

graph applications, these modules can be adaptively mod-

ified accordingly. For example, for graph algorithms send-

ing scalar values, the DP model is the standard model and

when graph algorithms send set-valued data, we adopt DP

models specifically designed for this data type [10]. To sim-

plify our discussion, in this paper, we focus on graph algo-

rithms sending scalar-valued data, including a single scalar

value (e.g., PageRank) or a vector of scalar values (e.g., ALS).

The sampling probability and number of combiners are also

application-dependent. To improve the usability of PGPregel,

it is our future work to design automated parameter tuning

for different modules.

6 EVALUATION
We perform an in-depth evaluation of the performance of

PGPregel and analyse the quality of the results given various

graph applications and real-life large-scale graph data, un-

der various privacy settings. Our experiments focus on the

impact of integrating differential privacy on the execution

of graph applications, and the main factors influencing both

quality and performance. We run experiments on a physical

cluster and, to enable flexible evaluations, we implemented

a simulator (in about 3000 lines Of code).

Table 2 User-Movie ratings for ALS

Real Ratings Users Movies Ratings
MovieLens-1M 6,040 3,706 1,000,209

MovieLens-10M 71,567 10,681 10,000,054

6.1 Dataset
The four graph applications that we target (see Section 3.2)

can be classified into two types. First, PageRank, HITS and

SALSA are centrality algorithms which rely on random walk

to rank the relative importance of a node in a graph. Thus we

adopt large real-world social and web graphs for their evalu-

ations as shown in Table 1. Second, ALS is a collaborative

filtering algorithm that usually works on user-item datasets.

Thus we adopt the widely used MovieLens dataset for its

evaluation as shown in Table 2. We distribute the graphs

on geo-distributed DCs based on the real geographical dis-

tribution of Twitter users [62]. Specifically, we first select

five leading countries that have the largest numbers of Twit-

ter users, including United States, Japan, India, Brazil and

France. We then build a geo-distributed platform by selecting

one Amazon EC2 cloud region in each of the five countries,

including US West Oregon (USW), Asia Pacific Tokyo (TKY),

Asia Pacific Mumbai (MUB), South America Sao Paulo (SPA)

and Europe Paris (EUR). According to the proportions of

Twitter users located in the five countries, we distribute 43%,

31%, 11%, 10%, and 5% of graph vertices to the USW, TKY,

MUB, SPA and EUR DCs, respectively, for all graphs. Vertices

are randomly mapped to different DCs. The privacy level

of each region is derived from Figure 1, which are 2, 3, 1,

3 and 3, respectively, for USW, TKY, MUB, SPA and EUR.

We adopt real network bandwidths measured between real

cloud regions to evaluate graph processing performance.

6.2 Comparison Alternative Solutions
We compare PGPregel to the following solutions, where the

first four are compared for all applications and the last one

is a DP-based comparison specialized for ALS. To the best of

our knowledge, no DP-based solutions have been proposed

for the other three applications.

• Pregel [51] is the baseline comparison which does not

consider data privacy issue. We use it as a baseline for

accuracy and WAN usage measurements.

• Pregel-DP is Pregel integrated with standard DP tech-

niques to ensure privacy. Specifically, Pregel-DP adopts

the same budget allocation method as PGPregel and it

perturbs every cross-DC message. As we are the first to

preserve DP in geo-distributed graph processing, we imple-

ment Pregel-DP as the state-of-the-art privacy-preserving

graph engine to show the effectiveness of PGPregel.

• Monarch [37] is designed for geo-distributed graph pro-

cessing which uses local computation and global communi-

cation to reduceWANusage and improve system efficiency.
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Figure 7 End-to-end evaluation results of compared systems on five real-world graphs and three applications. Error bars show
the standard deviation of accuracy results.

Monarch does not consider privacy issue and we use only

local computations (i.e., zero inter-DC data transfer) in the

implementation to guarantee data privacy.

• Monarch-DP [37] implements Monarch with global com-

munication and adopts standard DP to preserve privacy in

the same way as Pregel-DP does. We implement Monarch-

DP using the Pregel graph computation model instead of

GAS model for fair comparison in this paper.

• PALS [29] is a DP-based solution specifically designed for

ALS and we adopt it as the state-of-the-art comparison to

show the effectiveness of PGPregel on preserving DP for

graph applications while achieving good accuracy. Root

Mean Square Error (RMSE) is often used to measure the

prediction accuracy of ALS algorithms, thus we adopt

RMSE as the utility measure for ALS application.

For all comparisons, we run the applications with the same

fixed number of iterations. We set the number to 20 for

PageRank and 10 for the other applications, according to

their convergence speed when running on Pregel.

6.3 End-to-End Evaluations
We run a physical cluster of six nodes to emulate the geo-

distributed environment, where one node acts as the coor-

dinator of Giraph and the other five are workers each rep-

resenting a cloud DC. During graph processing, messages

are transferred across the five workers and we control the

network bandwidths between nodes using network traces

measured from Amazon EC2. Below we present the end-to-

end performance (i.e., WAN usage) and accuracy (i.e., ARE,

precision, RMSE) results of compared methods for the two

types of applications separately. The two types of applica-

tions differ in datasets and communication/computation fea-

tures. Thus we believe the results can demonstrate good

generality of PGPregel for different recommendation-based

applications.

6.3.1 Overall Results of PageRank, HITS and SALSA. Figure 7
shows how PGPregel compares with Pregel-DP, Monarch

and Monarch-DP with respect to the quality measures on

the five real-world graphs for PageRank, HITS and SALSA.

We set the sampling rate to 30%, 60% and 100% for HITS,

PageRank and SALSA, respectively. The privacy budget is 1

and the top-k size is 2%. We have the following observations.

First, looking at the accuracy, PGPregel obtains the lowest

average relative error (ARE) and the highest precision for all

applications on all graphs. The ARE of PGPregel is 99%-100%,

1%-74% and 99%-100% lower than Pregel-DP, Monarch and

Monarch-DP, respectively, and the precision of PGPregel is

8%-1225x, 4%-154x and 18%-1345x higher than Pregel-DP,

Monarch and Monarch-DP, respectively. Taking a closer look



PGPregel: Privacy-Preserving Graph Processing in Geo-Distributed DCs SoCC ’22, November 7–11, 2022, San Francisco, CA, USA

Figure 8 Relative error dis-
tribution of a vertex in Live-
Journal using PageRank al-
gorithm.

Figure 9 Vertex noise distri-
bution in the first iteration
of SALSA on LiveJournal.

at the results, Figure 8 shows the relative error distributions

of a vertex in the LiveJournal graph when running PageRank

using Monarch and PGPregel. The results demonstrate that

our proposed techniques are effective in improving the ac-

curacy of geo-distributed graph processing while satisfying

differential privacy.

Second, Pregel-DP and Monarch-DP perform the worst

among the comparisons, with extremely large error and

low precision in most cases. This is mainly due to the large

amount of noises added to inter-DC data communications

during graph processing. The precision of Pregel-DP and

Monarch-DP are relatively high for SALSA, which is due to

the fact that an inter-DC message in SALSA requires adding

twice the Laplace noise before being used to update the value

of a target vertex. That is, each update in SALSA needs two

random walks - one forward and one backward. For example,

to update the hub/authority score on the left-hand side of the

bipartite graph, the random walk will always end up back

on the left-hand side. This results in a noise cancellation

effect which helped to improve the accuracy of Pregel-DP

and Monarch-DP. To demonstrate this effect, we show in

Figure 9 the distribution of vertex noise in the first iteration

of SALSA using LiveJournal graph. The noise added to each

inter-DC message is sampled from the Laplace distribution

shown in the figure. Clearly, the noise added to the vertices

in one SALSA iteration can lead to smaller error compared

to the noise sampled directly from the Laplace distribution.

Third, by avoiding all inter-DC communications, Monarch

can reach good accuracy for some applications such as HITS.

Monarch achieves very low ARE and high precision on HITS,

which are 0-1% and 65%–90%, respectively. The reason that

ARE is very low is that we normalize the hub and authority

scores of a vertex to [1,2) by adding 1 to a small value in

[0,1) calculated using all messages received by the vertex.

Thus, the impact of missing messages on the ARE of the

scores becomes less significant. However, Monarch performs

poorly on the other two applications, especially on SALSA.

This is again due to the fact that one vertex update in SALSA

requires two message passing to get the desired data, which

is more vulnerable to message dropping as in Monarch.
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Figure 10 End-to-end accuracy results of compared systems
for ALS. Error bars represent standard deviation.
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Figure 11 End-to-end WAN usage results of ALS application.

When looking at theWAN usage, PGPregel achieves lower

WAN usage than Pregel-DP at all times. Specifically, PG-

Pregel reduces the WAN usage by 86%-96% and 52%-86%

compared to Pregel-DP and Monarch-DP, respectively. Al-

though Monarch-DP has much lower WAN usage compared

to Pregel-DP thanks to its local computation design, it still

consumes much more WAN usage (thus worse performance)

compared to PGPregel. AlthoughMonarch leads to zero inter-

DC communication, it has poor generality in obtaining good

graph processing accuracy. In contrast, PGPregel is able to

obtain good accuracy on all three applications with very low

inter-DC data communication overhead.

Lastly, PGPregel adds some extra overhead to the end-to-

end latency of geo-distributed graph processing. Evaluations

using PageRank and the LiveJournal graph show that PG-

Pregel spends on average 248ms in each iteration for message

sampling, combination and distribution, which is lower than

3% of the end-to-end graph processing latency per iteration

using PGPregel.

6.3.2 Overall Results of ALS. Figures 10 and 11 show the

accuracy and WAN usage results of compared algorithms

for the ALS application. We set the sampling probability of

PGPregel to 30%. The privacy budget varies from 0.001, 0.01,

0.1 to 1. We have the following observations.

First, PGPregel obtains the lowest RMSE results among all

privacy-preserving comparisons. When the privacy budget

is 1, all DP-based solutions, namely Pregel-DP, Monarch-DP,

PALS and PGPregel, obtain equally good accuracy results.

With the decrease of the budget, the RMSE result of Pregel-

DP and Monarch-DP both increase rapidly. PGPregel is able
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to obtain better accuracy results compared to PALS, the DP-

based solution specifically tailored for ALS, more obvious at

low privacy budgets.

Second, similar to the first three applications, PGPregel

can greatly reduce the WAN usage and hence system latency

for ALS compared to the other algorithms except Monarch.

For example, PGPregel reduces the WAN usage by 93%-98%

compared to the other three DP-based solutions. Although

the WAN usage of PGPregel is slightly higher than Monarch,

it obtains much lower RMSE.

We make the following takeaways from the above results:

• Compared to both naive (e.g., Pregel-DP) and optimized

(e.g., PALS) DP solutions, PGPregel obtains better accuracy,

performance and generality;

• Compared to studies using privacy regulations as data

movement constraints (e.g., Monarch), PGPregel obtains

much better accuracy;

• Adapting existing geo-distributed graph processing system

to preserve privacy is a non-trivial task (e.g., Monarch-DP).

In the following, we perform sensitivity studies to show

the effectiveness of PGPregel. For simplicity yet without loss

of generality, we only use PageRank, HITS and SALSAwhich

adopt the same quality measures. Results of Monarch-DP are

not shown since it performs similarly to Pregel-DP.

6.4 Effectiveness under Varying Top-k Sizes
As precision is more relevant measure for recommendation-

based applications, we report the precision obtained by the

compared systems under different top-k sizes. Specifically,

we vary k from 1%, 2%, 5%, 10% to 100% of the number of

vertices using Twitter graph and show the results in Figure 12.

We have the following observations.

First, PGPregel obtains the highest precision among the

compared solutions for all k values and all applications. This

demonstrates the effectiveness of PGPregel regardless of the

value of k. Second, graph processing precision increases as

k increases for all three comparisons. This is because when

we increase the value of k, the vertices that were not in the

top-k list of the baseline results may have a chance to get in

the longer list. Hence the precision of the results measured

using the larger k value will increase. By default, k is 2%.

6.5 Impact of Privacy Budget 𝜖
The degree of privacy protection is related to 𝜖 . The smaller

the 𝜖 , the higher the protection and the larger the noise. Spec-

ifying the desired accuracy is application-dependent, similar

to specifying the privacy budget. PGPregel helps users to

trade-off accuracy and privacy requirements. We study the

accuracy of PGPregel under different 𝜖 using Twitter graph,

so as to learn whether PGPregel can support higher privacy

protection. We vary 𝜖 from 0.001, 0.005, 0.01, 0.05, 0.1, 0.5 to 1.

We set 𝜖 to 1 by default. Figure 13 shows the accuracy results

of the comparisons using simulator. We have the following

observations.

First, PGPregel obtains higher precision and lower ARE

when 𝜖 increases. This is expected as a smaller privacy bud-

get leads to more noise added during geo-distributed graph

processing. Second, PGPregel can achieve better accuracy

than state-of-the-art comparisons even at a very low budget.

For example, for PageRank and SALSA, PGPregel obtains

higher precision compared to Monarch and Pregel-DP under

all budgets. This means PGPregel can guarantee very tight

differential privacy levels while improving graph processing

accuracy. Third, PGPregel shows different degrees of sensitiv-

ity on the 𝜖 parameter for different applications. For example,

the accuracy of PGPregel decreases abruptly when 𝜖 is lower

than 0.01 for PageRank, and less so for SALSA and HITS.

This is partly due to the different global sensitivities of the

applications. Both SALSA and HITS have global sensitivity

of 1 while PageRank has a larger bounded sensitivity. Thus,

PageRank is injected with larger amounts of noise compared

to the other two applications and is more vulnerable to small

privacy budgets. The reason that HITS is less sensitive to

changes in privacy budgets compared to SALSA is due to the

normalization operation in HITS which bounds the noise to

the range of (0,1).

6.6 Impact of Sampling Rate
The sampling technique can both positively and adversely

affect the accuracy of PGPregel due to the budget amplifica-

tion effect and the loss of useful inter-DC information. We

study its impact by varying the sampling rate from 0, 10%,

20%, . . . , to 100% using Twitter graph. Figure 14 shows the

obtained results. Note that, when the sampling rate is 0, PG-

Pregel is equivalent to Monarch since there is no inter-DC

communication. We have the following observations.

First, the graph processing precision obtained by PGPregel

decreases along with the decrease in sampling rate. This is

expected as a higher sampling rate maintains more useful

information and hence leads to higher precision. The ARE re-

sults slightly increase with the decrease of the sampling rate.

This is mainly due to the budget amplification effect which

helps to diminish the adverse impact of message dropping

on the accuracy of graph processing results.

Second, PGPregel shows different degrees of sensitivity

dependence on sampling rate for different applications. For

example, the precision of PGPregel remains highwith respect

to HITS (above 90%) even with decreasing sampling rates.

This is consistent with the good precision results of Monarch

for HITS as shown in Figure 7. Note that, the WAN usage is

almost linearly related to the sampling rate. Thus, we prefer

choosing a small sampling rate for HITS to achieve good

accuracy and low WAN usage at the same time. PageRank is

less sensitive to the sampling rate compared to SALSA. Thus,
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Figure 12 Evaluating the effectiveness of PGPregel under different top-k sizes using Twitter graph.
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Figure 13 Sensitivity study on the privacy budget 𝜖 using Twitter graph. Dashed lines represent the ARE and precision results
of Monarch and Pregel-DP (whichever performs better).

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100

AR
E 

(%
)

Sampling Rate

 PageRank
 SALSA
 HITS

(a) ARE

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100

Pr
ec

is
io

n 
(%

)

Sampling Rate

 PageRank
 SALSA
 HITS

(b) Precision

Figure 14 Sensitivity study on sampling rate using Twitter.

we can choose a smaller sampling rate for PageRank than

that for SALSA. By default, we set the sampling rate to 30%,

60% and 100% for HITS, PageRank and SALSA, respectively,

for a good balance between system utility and latency.

6.7 Impact of Budget Amplification
Budget amplification can effectively reduce the accuracy loss

caused by DP perturbation. To clearly show the positive

effects brought by budget amplification, we compared the

accuracy of using sampling with and without budget ampli-

fication. We perform experiments using simulator and set

the privacy budget to 0.01 and 0.1 for Livejournal graph and

PageRank algorithm. Figure 15 shows the obtained results.

We have the following observations.

First, the budget amplification effect is useful on improving

the accuracy of graph processing results under different pri-

vacy budgets. Specifically, when 𝜖 is 0.01 and 0.1, the budget

amplification reduces the ARE by 44% and 24%, respectively,

and improves the precision by 119% and 45%, respectively.

Second, the budget amplification effect is more useful on

improving the accuracy of graph processing results when

3.2

0.21

1.8

0.46

ARE P
0
1
2
3
4
5

 Without Amplification
 With Amplification

(a) 𝜖 = 0.01

0.46 0.380.35
0.55

ARE P
0.0
0.2
0.4
0.6
0.8
1.0
1.2

 Without Amplification
 With Amplification

(b) 𝜖 = 0.1

Figure 15 Impact of budget amplification using Livejournal.

the privacy budget is lower. This shows that PGPregel can

achieve good utility even under strict privacy protection

requirements.

6.8 Impact of Combiners
To study the impact of combiners on accuracy, we vary the

number of non-perturbed combiners between each pair of

DCs from 1 to the number of total messages. Privacy budget

is set extremely large to only show the impact of combiners.

Figure 16 shows the results of the study using PageRank al-

gorithm and LiveJournal graph. The accuracy of processing

results improves when the number of combiners increases

from 1 to 15, while the WAN usage remains almost the same.

When the number of combiners is 15, the ARE is almost zero

and the precision is close to 100%. When the number of com-

biners further increases, the accuracy does not change much

while the WAN usage increases significantly. Similar obser-

vations are also obtained on the other three applications.

This shows that when the number of combiners is small, we

can achieve good performance (i.e., lowWAN usage) without

sacrificing too much accuracy.
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Figure 16 Impact of non-perturbed combiners on graph pro-
cessing results using PageRank and LiveJournal.

7 RELATEDWORK
7.1 Geo-Distributed Graph Processing
There have been many graph processing systems [3, 11, 33,

70, 71, 76] proposed for scalable and efficient graph execu-

tions in single DCs. Recently, there have been some stud-

ies focusing on the cost and performance optimizations for

graph processing in geo-distributed DCs via graph parti-

tioning [43, 77, 78]. However, such studies require vertex

migration to perform graph partitioning, which introduces

large inter-DC data movement and may violate privacy reg-

ulations when used in geo-distributed environments.

A few graph execution models have been proposed specif-

ically for geo-distributed DCs [5, 37, 49, 72]. For example,

Monarch [37] proposed to use sampling technique and incre-

mental computation to reduce the data exchanged across geo-

distributed DCs. HSP [49] is extended from the BSP model

by performing synchronization in a two-level hierarchy to

get a lower WAN bandwidth usage and faster convergence.

GeoGraph [72] is a universal framework to support efficient

geo-distributed graph query processing based on clustering

DCs andmeta-graph. Compressed data direct computing [75]

is another promising technique to improve the efficiency of

large-scale graph processing. None of the studies mentioned

above has considered the privacy issue in geo-distributed

DCs, which is crucial to big data applications [17].

7.2 Privacy-Preserving Graph Processing
The privacy issue has attracted great attention from different

applications. Vulimiri e. al [65] considered privacy regulation

as constraints and restricted data movement in case of regula-

tion violation. Quoc et. al [56] proposed a privacy-preserving

stream analytics system on distributed users’ private dataset.

Agarwal et. al [2] proposed a privacy-preserving model for

distributed machine learning based on DP. However, these

systems cannot be easily adapted to graph applicationswhich

have different computation and communication patterns.

Privacy-preserving graph publishing techniques have been

studied to preserve the utility of graphs while preserving

data privacy [19, 35, 38, 46, 47]. Although such studies can

protect graph structures, there still lacks an end-to-end so-

lution which can preserve graph data privacy during geo-

distributed execution without modifying the applications.

Achieving privacy preservation during graph processing

is non-trivial. Although existing techniques such as data

encryption [30, 64, 74] and secure multi-party computa-

tion [26, 31] can be used to preserve data privacy, they are

known for high latency. Differential privacy (DP) [23] is a

general and lightweight technique for privacy-preserving

and has been explored by existing studies [7, 50, 52, 68] in

collaborative filtering recommendation systems to protect

personal data privacy. Sealfon [58] uses DP when calculating

the shortest path of graphs, where the graph topology is pub-

lic and the private information consists only of edge weights.

However, these studies are proposed for a specific applica-

tion only. To the best of our knowledge, there is no universal

DP solution that can adapt to different graph applications.

8 CONCLUSION
Graph processing in geo-distributed DCs faces two new chal-

lenges, including the performance issue due to scarce net-

work resource in wide area and the privacy issue due to

asymmetric privacy regulations in different geographical

regions. To address the challenges, we propose PGPregel, an
end-to-end system for privacy-preserving graph processing

in geo-distributed DCs with high utility and low latency. PG-
Pregel adopts differential privacy (DP) to preserve privacy

and incorporates two techniques including sampling and

combiners to reduce the impact of DP perturbation hence

improving the accuracy of graph processing results. The two

techniques are also useful for reducing inter-DC data com-

munication and hence reducing system latency. PGPregel

takes the first step towards making a practical DP-based sys-

tem for a type of important graph applications. Compared to

existing DP-based solutions which are mostly specialized for

one application [29], PGPregel shows much better generality.

Evaluations using real-world graphs and real cloud traces

have demonstrated the effectiveness of PGPregel.
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