
Adaptive Partitioning for Large-Scale Graph
Analytics in Geo-Distributed Data Centers
Amelie Chi Zhou∗, Juanyun Luo∗, Ruibo Qiu∗, Haobin Tan∗, Bingsheng He† and Rui Mao∗

∗College of Computer Science and Software Engineering, Shenzhen University
†Department of Computer Science, National University of Singapore

Abstract—Graph partitioning is an important problem to the
performance and cost optimization of graph analytics in geo-
distributed environments. Modern hybrid-cut model is expected
to obtain better performance and cost optimizations than tra-
ditional partitioning models, but can further complicate geo-
distributed graph partitioning which is already a challenging
problem due to large graph sizes and network heterogeneities
of geo-distributed DCs. Existing studies usually adopt heuristic-
based methods to achieve fast partitioning for large graphs,
which unfortunately sacrifices optimization effectiveness. Further,
graph structures of many applications can change at various
frequencies. Dynamic partitioning methods usually focus on
achieving low latency to quickly adapt to changes, which may
again sacrifice partitioning effectiveness. Also, such methods are
not aware of the dynamicity of graphs and can over sacrifice
effectiveness for unnecessarily low latency.

In this paper, we propose RLCut, which uses Reinforcement
Learning (RL) to help taming the complexity of the problem.
Specifically, RLCut uses multi-agent learning which is more
efficient than single agent RL and incorporates a sampling
based optimization to adaptively control the training process
to satisfy required trade-off between partitioning effectiveness
and efficiency according to graph dynamicity. Experiments using
real cloud DCs and real-world graphs show that, compared
to state-of-the-art static partitioning methods, RLCut improves
the performance of geo-distributed graph analytics by 10%-
100% with comparable overhead. When users tolerate longer
partitioning overhead, we can further improve the performance
by up to 43%. With varying graph changing frequencies, RLCut
can improve the performance by up to 60% compared to state-
of-the-art dynamic partitioning.

I. INTRODUCTION

Recently, many graph analytics applications involve ana-
lyzing large sizes of data spread in multiple geographically
distributed (geo-distributed) data centers (DCs). For exam-
ple, social networks usually contain user data generated and
stored geo-distributedly, according to where the users are
located. Such applications are intrinsically geo-distributed,
which makes them extremely expensive to run in a centralized
manner due to the high inter-DC data movement cost [1], [2].
On the other hand, when performing graph analytics in the
geo-distributed manner, it is less efficient to run an application
as it is (i.e., graph data are only located at where they are
generated), due to the heterogeneities in network bandwidths
and graph data transfer sizes between different pairs of DCs.
By moving graph data at offline time, we can possibly re-
duce the runtime inter-DC data communication latency and
cost. That is, we should consider the geo-distributed graph

(re)partitioning problem to improve application performance
and cost efficiency.

Most existing graph partitioning methods take load bal-
ancing and communication minimization as optimization
goals [3], [4], [5], [6], [7], [8], which can lead to good
graph analytics performance in traditional systems with ho-
mogeneous network bandwidths. However, this is not the case
in geo-distributed environments. As shown in Section II, the
uplink/downlink bandwidths of a single DC can be highly
heterogeneous and the bandwidths of different DCs also differ
a lot. Thus, a load-balanced graph partitioning solution does
not necessarily lead to good graph analytics performance in
geo-distributed DCs. Due to problem complexities in graph
sizes and network heterogeneities, it is non-trivial to obtain
good partitioning results for large graphs in a short time.
Recently, a few graph partitioning methods have been pro-
posed to optimize graph analytics performance in heteroge-
neous environments [9], [1], [10]. However, these methods
are not suitable for our graph (re)partitioning problem in geo-
distributed DCs due to the following reasons.

First, existing studies usually adopt heuristic-based methods
such as streaming-based partitioning to achieve fast partition-
ing for large graphs, which in turn sacrifices optimization
effectiveness. For example, assume a graph has N vertices
that need to be assigned to M DCs in the partitioning problem,
the solution space of the problem is O(MN) while the search
space of the one pass streaming method is only O(M ×N).

Moreover, most existing algorithms adopt vertex-cut,
namely partitioning graphs through vertices, which is efficient
for real-world graphs [3]. However, as vertex-cut generates
replicas for vertices which require inter-replica traffic to
exchange vertex information, it can lead to high inter-DC
data communication if partitioned inappropriately. The hybrid-
cut model uses differentiated partitioning for vertices with
high/low-degrees and thus can avoid introducing inter-replica
communication for low-degree vertices. Our experiments show
that, hybrid-cut can obtain up to 87% less inter-DC data
communication than vertex-cut (see Figure 2 for details) and
thus is more suitable for graph partitioning in geo-distributed
environments. However, the differentiated computation and
partitioning of the hybrid-cut model further complicate the
problem and make it even harder for heuristic-based methods
to find a good solution in a short time.

What makes the situation worse is that, many real-world
graphs are dynamic with updates on vertices, edges or both

at various frequencies. For example, the Twitter graph can
receive thousands of updates per second at peak when there’s
a hot topic and receive much less updates at other times [11].
Existing graph partitioning methods designed for dynamic
graphs are mostly best-efforts methods that focus on achieving
low latency to maintain good graph partitioning on the fly
along with graph changes. Partitioning effectiveness is usually
sacrificed for low latency in such methods, while the effective-
ness has already been compromised to achieve fast partitioning
for large graphs under the complicated hybrid-cut model as
discussed above. The update frequency of dynamic graphs
are seldomly taken into consideration by existing dynamic
partitioning methods and partitioning effectiveness could be
over sacrificed for the low latency that’s not even necessary. A
more preferred way is to have an adaptive partitioning method
that can automatically adjust the trade-off between partitioning
overhead and quality according to the dynamicity of graphs.

In this paper, we propose to use machine learning to help
taming the complexity of efficient graph partitioning based on
hybrid-cut in geo-distributed DCs. Specifically, we propose
an adaptive method named RLCut based on Reinforcement
Learning (RL). RL has been widely adopted by recent studies
for complicated decision-making problems [12], [13], [14],
[15], [16] and has the ability of optimizing long-term reward
in dynamic environments. Thus, it can satisfy our wish to
be adaptive on the trade-off between optimization effective-
ness and overhead. Considering the dynamicity of graphs,
RLCut takes the optimization overhead as a constraint to
adaptively tune its optimization process, with the objective of
optimizing the performance of geo-distributed graph analytics
while satisfying the budget constraint on inter-DC data transfer
cost. The overhead constraint could be set by an expert user
or learned during graph changes. We mainly address the
following challenges in RLCut.

First, to apply RL for our geo-distributed graph partition-
ing problem, we adapt the hybrid-cut model and formulate
the differentiated partitioning as a unified state of the RL
training environment. Second, RL has the problem of large
optimization overhead, which is more severe when partitioning
large graphs. To address this problem, we utilize multi-agent
learning [17] which is much cheaper and more efficient than
single agent, and propose two optimization techniques, namely
batching and straggler mitigation, to reduce the overhead
of RLCut while preserving good performance optimization
result. Finally, to adaptively trade off between optimization
effectiveness and efficiency for dynamic graphs, we propose a
sampling-based technique to adaptively decide the number of
agents participating in the training of RLCut considering the
required optimization overhead.

We compare RLCut with six state-of-the-art graph parti-
tioning methods based on different partitioning models for
both static and dynamic graphs [1], [3], [6]. Experiments using
real geo-distributed cloud DCs and real-world graph datasets
show that, RLCut can improve the performance optimization
result over state-of-the-art comparisons by 10%-100% with
comparable optimization overhead. For example, for large

TABLE I
UPLINK/DOWNLINK BANDWIDTHS OF CC2.8XLARGE INSTANCES FROM
AMAZON EC2 REGIONS TO THE INTERNET. PRICES ARE FOR UPLINKS.

US East AP Singapore AP Sydney

Uplink Band. (GB/s) 0.52 0.55 0.48
Downlink Band. (GB/s) 2.8 3.5 2.5
Price ($/GB) 0.09 0.12 0.14

EU AS NA OC AF USA_East

USA_West

SA

EU
AS
NA
OC
AFUSA

_Ea
stUSA

_W
est
SA

182

910

4,550

22,750

113,750

568,750
Edges

Fig. 1. Number of edges between DCs in the Twitter graph, where vertices
are located in eight different DCs.

graphs such as it-2004 [18] with over one billion edges, we can
obtain a good partitioning result in six minutes. When users
tolerate longer partitioning overhead, RLCut is able to further
improve the performance of geo-distributed graph analytics
by up to 43%. When varying the graph changes at different
frequencies, RLCut can improve the performance optimization
results by up to 60% compared to state-of-the-art dynamic
partitioning method [7].

The remainder of this paper is organized as follows. Sec-
tion II introduces the background and related work. Section III
formulates the problem studied in this paper. Section IV and
Section V present details of our RL-based adaptive graph
partitioning approach. Section VI presents the experimental
results and Section VII concludes this paper.

II. BACKGROUND AND MOTIVATION

A. Geo-Distributed Graph Analytics

Many graph applications, such as social networks, involve
analyzing large sizes of data generated and stored in multiple
geo-distributed DCs. Although one way of processing such
applications is to move all data into the same DC, it is not
always viable to do so. On one hand, moving large amount
of data across DCs is very pricy and slow, which could
violate the SLA requirements of latency-sensitive applications.
On another hand, due to data privacy concerns, it is some-
times prohibited to move graph data out of their original
DCs. In such cases, graph analytics has to be performed in
a geo-distributed manner. Performance optimization of geo-
distributed graph analytics is challenging, mainly due to the
following reasons.

First, the wide area network (WAN) across DCs is costly and
highly heterogeneous [19]. We have evaluated the WAN band-
widths of multiple geo-distributed service regions of Amazon
EC2 cloud. Table I shows the uplink/downlink bandwidths

from/to three Amazon EC2 regions to/from the WAN using
cc2.8xlarge instances. We have the following observations.

• Heterogeneous bandwidths within and across DCs:
Within a single DC, the downlink bandwidths of the three
regions are several times higher than their uplink band-
widths. Across different regions, the uplink and downlink
bandwidths of the Singapore region are 17% and 40%
higher than those of the Sydney region, respectively. Net-
work heterogeneities make the performance optimization
for geo-distributed graph analytics more challenging.

• High cost of WAN usage: Data transfer within the same
region is usually free of charge on most public clouds,
while sending data from cloud DCs to the Internet can
be pricy. This motivates us to reduce the WAN usage as
much as possible for geo-distributed graph analytics.

Second, inter-DC data transfer plays an important role in
geo-distributed graph analytics. We study the distributions of
high degree vertices (> 10, 000 followers) in the Twitter graph
using real geographic locations of users [20]. Specifically, we
cluster user locations into eight DCs, including South America,
USA West, USA East, Africa, Oceania, North America, Asia
and Europe. Figure 1 shows the number of edges between
different pairs of DCs, where the diagonal cells represent
intra-DC edges and the rest represent inter-DC edges. The
number of edges can reflect the amount of data transfer
between DCs. We find that over 75% of all edges are inter-
DC edges, which means that the optimization of inter-DC data
communication plays an important role in the performance and
cost optimizations of geo-distributed data analytics.

B. Graph Partitioning Methods

Large graph analytics applications are usually executed in
a distributed manner, where graphs are partitioned onto mul-
tiple machines for parallel computation. In the geo-distributed
environment, a graph is naturally partitioned across DCs.
However, this initial partitioning only reflects data distribution
nature and does not guarantee good performance of geo-
distributed graph analytics. To optimize the performance,
it is crucial to re-partition the graph considering network
heterogeneities and application requirements. Different graph
applications favor different graph partitioning methods. We
discuss from the following two aspects.

Different partitioning models. There are three commonly
used graph partitioning models, including edge-cut [21], [4],
vertex-cut [3], [22] and hybrid-cut [6]. Edge-cut distributes
vertices to multiple machines and creates replicated edges
and vertices (e.g., mirrors) to form a locally consistent graph
state in each machine. Vertex-cut distributes edges to multiple
machines and only needs to replicate vertices in each machine.
Thus, vertex-cut is more efficient than edge-cut for natural
graphs, where a small number of vertices have very high
degrees and can cause high communication cost and load
imbalance if cut through edges. However, as vertex-cut treats
high-degree and low-degree vertices equally, it can lead to
large replication factors if partitioned inappropriately [6].

LiveJournal

Orkut
uk-2005

it-2004
Twitter

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 W
an

 U
sa

ge

 Hybrid-cut
 Vertex-cut

4.18

5.02

5.57

7.25

3.83

5.82

3.39

5.75

2.76

4.4

Fig. 2. Normalized WAN usage of
PageRank on geo-distributed Ama-
zon EC2 regions using different par-
titioning methods. Numbers on the
bars represent replication factors.

LiveJournal

Orkut
uk-2005

it-2004
Twitter

0

1

2

3

4

No
rm

al
iz

ed
 D

at
a

Tr
an

sf
er

 T
im

e Low
 Medium
 High

Fig. 3. Inter-DC data transfer
time of PageRank on geo-distributed
DCs with low/medium/high hetero-
geneities. Results are obtained by
Ginger normalized to that of RLCut.

Hybrid-cut introduces differentiated partitioning for high/low-
degree vertices. It adopts low-cut to distribute low-degree
vertices along with their in-edges to multiple machines, and
uses high-cut to distribute all in-edges of high-degree vertices.

Compared to vertex-cut, hybrid-cut can achieve much lower
replication factors (λ) for vertices, which is important in geo-
distributed DCs as the inter-DC data communication between
replicas can cause poor performance and high cost to geo-
distributed graph analytics. We compare the balanced p-way
vertex-cut [3] and hybrid-cut [6] using five real-world graphs
and the PageRank algorithm on geo-distributed Amazon EC2
regions (see Section VI for detailed experimental setup).
Figure 2 presents the normalized WAN usage and vertex
replication factors of the compared methods, which show
the superiority of hybrid-cut over vertex-cut on reducing
replication factor and communication cost.

Static vs. Dynamic graphs. Many graph partitioning meth-
ods have been proposed for static graphs [21], [3], where
graph structure does not change much and the main focus
is to improve the optimization effectiveness on performance,
load balance, etc. Dynamic graphs, on the other hand, have
frequent changes on the graph structure. For example, the
Twitter graph can receive thousands of updates per second
which may impact the trending topic analytics result of
recommendation systems [11]. Graph partitioning methods
have to quickly adapt to the changes in graph structures to
guarantee good performance of the analytics jobs. Existing
partitioning methods for dynamic graphs usually have low
latency or good adaptivity to maintain good partitioning when
facing graph changes. For example, many lightweight graph
repartitioning methods [7], [23], [24], [25] have been proposed
to efficiently adapt graph partitioning in the face of changes by
incrementally migrating vertices/edges among partitions using
certain heuristics. Streaming-based graph partitioning methods
such as Fennel [5] can assign newly added vertices/edges
“on-the-fly” without adapting existing partitions and thus may
lead to poor application performance. Leopard[26] and GR-
DEP [27] proposed to use streaming-based methods to obtain
fast initial solutions and improve upon those solutions by
reassigning vertices/edges among partitions. Fan et. al. [28]
proposed to incrementalize batch partitioners for dynamic

0 2 4 6 8 1012141618202224
0

8

16

24

32

40

Time(Hour)

Th
e

R
at

io
 O

f A
dd

ed
N

od
es

(
)

0 2 4 6 8 1012141618202224
0

2

4

6

8

10

12

Time(Hour)

Th
e

R
at

io
 O

f A
dd

ed
Ed

ge
s(

)

Fig. 4. The ratio of added nodes and edges to the Stack Overflow website
data during September 15th, 2008.

graphs with bounded partition quality.
Clearly, partitioning methods proposed for static and dy-

namic graphs have very different design goals. To the best
of our knowledge, no existing graph partitioning method can
be adaptively applied to both static and dynamic graphs while
achieving good partitioning effectiveness/efficiency as needed.

C. Motivation

Based on the above discussions, we have summarized the
following needs that motivate us to design a new partitioning
method for geo-distributed graph analytics.

Optimality. Inter-DC data communication plays an impor-
tant role to the performance optimization of geo-distributed
graph analytics. However, due to the heterogeneity of geo-
distributed network environment and the large sizes of real
graphs, it is hard to obtain a good solution using traditional
heuristic-based methods.

To demonstrate this challenge, we simulate three geo-
distributed environments with Low, Medium and High network
heterogeneities, where Medium simulates the real Amazon
EC2 environment described in Section VI. In Low, all DCs
have the same uplink/downlink bandwidths. In High, we set
the bandwidths of half the DCs to 50% of their original
bandwidths to increase the heterogeneity. We compare the
effectiveness of state-of-the-art heuristic-based partitioning
method Ginger [6] with our proposed solution RLCut. Figure 3
shows the optimized inter-DC data transfer time of PageRank
algorithm using five real-world graphs obtained by Ginger
normalized to that of RLCut. Clearly, Ginger obtained higher
inter-DC data transfer time compared to RLCut when the
network is more heterogeneous and when the graph size gets
larger. Thus, it is necessary to design a new method that can
handle the high complexity of large-scale graph partitioning
in geo-distributed DCs.

Adaptivity. Effectiveness and efficiency are two contra-
dictory optimization goals of graph partitioning algorithms.
Usually we have to sacrifice one in exchange of the other. For
example, partitioning algorithms for static graphs often aim
at obtaining good optimization effectiveness with a relatively
high overhead while partitioning for dynamic graphs has to
sacrifice certain effectiveness to achieve low overhead. This
is especially true in the geo-distributed DCs, where graphs
are extremely large and it is hard to achieve low-latency
partitioning while preserving good effectiveness.

On another hand, the changes of graph structures are not
stable. For example, we study the graph structure change
of the Stack Overflow temporal network [29] using one day
data as shown in Figure 4. We observe that the maximum
ratio of added vertices and edges per hour can be five to
ten times higher than the minimum value, which shows that
the dynamicity of a graph is actually changing along the
time. Thus, it is necessary to adaptively balance between
partitioning effectiveness and efficiency according to graph
changes. Existing solutions are developed towards either one
of the two ends, thus do not satisfy the need.

III. PROBLEM FORMULATION

A. Assumptions

We study how to efficiently and adaptively partition a
large graph onto multiple geo-distributed DCs. The graph
data are generated and stored geo-distributedly. We have the
following assumptions. First, graph data are not replicated
initially. When the location of a vertex optimized by the
partitioning is different from its initial location, we replicate
vertex data to the optimized location. Second, there are suf-
ficient computation resources in each single DC, and inter-
DC data communication is the performance bottleneck of
geo-distributed graph analytics. This assumption is valid in
the geo-distributed environment since the WAN bandwidth is
much more scarce than the computation resources such as CPU
and memory. Third, DCs are connected with a congestion-free
network and the bottlenecks of the network are only from the
uplinks/downlinks of DCs [30]. This assumption is based on
the observation that many datacenter owners are expanding
their services world-widely and are very likely to build their
own private WAN infrastructure [31]. Finally, grounded on the
pricing scheme of most public clouds such as Amazon EC2
and Windows Azure, we assume that only uploading data from
a DC to WAN is charged.

B. Problem Definition

Consider a graph G(V,E) with input data stored in M geo-
distributed DCs, where V is the set of vertices and E is the set
of edges. Each vertex v (v = 0, 1, . . . , |V | − 1) has an initial
location Lv ∈ [0, 1, . . . ,M−1], which is where the input data
of v is stored. Denote the input data size as dv for vertex v. We
consider a dynamic graph as regularly inserting new vertices
V ′ and edges E′ into the original G. Given a time window,
if a dynamic graph has a larger number of vertices (edges) in
V ′ (E′), we say this graph has more frequent updates.

We adopt the hybrid-cut model for graph partitioning, which
categorizes vertices in V into low-degree and high-degree with
a pre-defined threshold θ. Each vertex v with in-degree no
less than θ is classified as high-degree and has Hv = 1.
Otherwise, v is classified as low-degree and has Hv = 0.
Coping with hybrid-cut, we adopt the differentiated vertex
computation model of PowerLyra [6] for graph processing.
Specifically, low-degree vertices are computed locally to avoid
communication and the computed vertex data are transferred

to all mirrors for synchronization. The computation of high-
degree vertices follow the traditional GAS model [3] to achieve
good parallelism. GAS model has three stages including
Gather, Apply and Scatter. In the gather stage, mirrors gather
data from local neighbors and send the gathered data to the
master. In the apply stage, the master updates vertex data
locally and sends the updated data to all mirrors. In the scatter
stage, all mirrors activate their local neighbors.

Performance formulation. According to our second as-
sumption, the performance of geo-distributed graph analytics
can be modeled using the inter-DC data transfer time during
graph execution. There are mainly two types of inter-DC
network traffic, namely the input data movement traffic before
graph execution and the runtime traffic during graph execution.
We first study the second type of inter-DC network traffic
to model the performance of geo-distributed graph analyt-
ics. Specifically, the runtime inter-DC network traffic mainly
comes from the data synchronization of low-degree vertices
and the gather and apply stages of high-degree vertices. For
a unified representation of vertex computation, we consider
the data synchronization of low-degree vertices happen at the
apply stage. Then, for a given iteration i of graph analytics
and a vertex v, each mirror in DC r sends aggregated data
of size grv(i) to the master of v in the gather stage and the
master sends the combined data of size av(i) to each mirror
to update the vertex data in the apply stage. To simplify the
calculation of data transfer time, we assume there is a global
barrier between the gather stage and the apply stage. Thus, the
inter-DC data transfer time in iteration i can be formulated as
the sum of the data transfer times in gather and apply stages.
In each DC, the data transfer finishes when it is finished on
both uplink and downlink. We formulate the inter-DC data
transfer time as below.

T (i) = TG(i) + TA(i) = max
r

T r
G(i) + max

r
T r
A(i) (1)

T r
G(i) = max(

∑
v I

r
vHv

∑
k∈Rv

gkv (i)

Dr
,

∑
v(1− Irv)Hvg

r
v(i)

Ur
)

(2)

T r
A(i) = max(

∑
v I

r
vav(i)|Rv|
Ur

,

∑
v(1− Irv)av(i)

Dr
) (3)

where Hv indicates whether vertex v is high-degree (Hv = 1)
or not (Hv = 0). Irv indicates whether the replica of vertex
v in DC r is the master (Irv = 1) or not (Irv = 0). Rv is
the set of DCs containing replicas of v and initially is empty.
Ur and Dr are the uplink and downlink bandwidths of DC r,
respectively.

Cost formulation. The inter-DC data communication cost
can be calculated as the sum of input data movement cost and
runtime data transfer cost. Denote the data movement cost as
Cmv and use Mv to represent whether the master location of
vertex v equals to Lv (Mv = 0) or not (Mv = 1), we have:

Cmv =
∑
v

MvdvPLv (4)

The runtime data transfer cost is calculated as the sum of
the cost spent on data uploading during the gather and apply

stages. Denote the unit price of uploading data from DC r to
the Internet as Pr, we have:

Crt(i) =
∑
v

∑
r∈Rv

Pr[I
r
vav(i)|R(v)|+ (1− Irv)Hvg

r
v(i)] (5)

Overall formulation. Based on the above analysis, we
formulate our geo-distributed graph partitioning problem as
the following constrained optimization problem, where B is
the budget on inter-DC data communication cost.

minT (i) (6)

s.t. Cmv +
∑
i

Crt(i) ≤ B (7)

Note that the cost and performance objectives can be
contradictory with each other. Thus, it is more complicated
to find a good graph partitioning solution for our problem
than existing studies which considers only one of the two
objectives [2], [1]. To obtain a good solution in reasonable
time, we propose an adaptive algorithm based on RL to trade-
off optimization effectiveness and efficiency. We introduce the
design details of our algorithm in the next section.

IV. RL-BASED GRAPH PARTITIONING FOR
GEO-DISTRIBUTED DCS

We use Learning Automata (LA), a reinforcement based
learning method, to solve the geo-distributed graph partition-
ing problem based on hybrid-cut. LA provides an ideal basis
for building multi-agent learning, which is more efficient than
single-agent for our large-scale and complicated optimization
problem. To apply LA, we have to answer the following
questions:

1) How do we model the geo-distributed graph partitioning
problem as a Markov decision process (MDP) and solve
it using LA?

2) How do we design key components of LA, such as
action selection and score function, to train each agent
effectively and to find a good partitioning solution?

3) The training overhead of reinforcement-based online
learning methods are usually high. How do we adap-
tively optimize the overhead to make the RL-based
partitioning method feasible for large geo-distributed
graphs with various update frequencies?

These questions are key to the effectiveness and efficiency
of RLCut. In the following, we introduce the details of our
solutions to the three questions.

A. Reinforcement Learning

Reinforcement Learning (RL) is a class of learning ap-
proaches in which an agent interacts with an environment. At
each time step k, the agent observes some state sk and takes
an action ak. The action changes the state of the environment
to sk+1 and the agent receives a reward rk as feedback. The
state transitions and rewards are stochastic and assumed to be a
Markov process. RL training proceeds in time steps. Each step
k consists of a sequence of (state, action, reward) observations,

i.e., (sk, ak, rk). The goal of RL training is to find an action-
selection policy that maximizes the total reward E[

∑T
k=0 rk],

where T is the training length.
Geo-distributed graph partitioning using hybrid-cut is a

complicated problem, mainly due to the network hetero-
geneities of the geo-distributed environment and the differen-
tiated computation and partitioning of the hybrid-cut model. It
is too expensive to use single agent RL to handle the problem.
Multi-agent Reinforcement Learning (MARL) [17], which is
cheaper and more efficient than single agent RL, is a better
option for our problem. Learning automata [32], [16] belongs
to the family of RL and has been viewed as an ideal basis to
build multi-agent learning algorithms.

A learning automaton is a probabilistic decision-making unit
situated in a unknown environment [32] that learns the optimal
action through repeated interactions with its environment. The
actions are chosen according to a specific probability distri-
bution which is updated based on the environment response
the automaton obtains by performing a particular action.
Generally, a learning automaton can be defined using the
quadruple [A(n), P (n), R(n), T], where n is the current train-
ing step. A(n) = {a1, a2, ..., am} is the action space. P (n) =
{p1(n), p2(n), ..., pm(n)} is the probability distribution of all
actions. R(n) = {r1(n), r2(n), ..., rm(n)} and ri(n) ∈ {0, 1}
is the reinforcement signal where 0 means reward and 1
means punishment. P (n + 1) = T (A(n), P (n), R(n)) is the
probability update function.

In the nth training step, if action ai(n) receives reward
signal, probability distribution is updated as follows:

pj(n+ 1) =

{
pj(n) + α(1− pj(n)), j = i
pj(n)(1− α), j ̸= i

(8)

Otherwise, if action ai(n) receives penalty signal, probabil-
ity distribution is updated as follows:

pj(n+ 1) =

 pj(n)(1− β), j = i

pj(n)(1− β) +
β

m− 1
, j ̸= i

(9)

where in Equation 8 and 9, α and β are reward and penalty
parameters, respectively.

B. Applying RL Model

To adopt RL for our graph partitioning problem, we first
have to model our problem using MDP and define its important
concepts for our problem, including state, action and policy.

On analyzing the partitioning rules of hybrid-cut, we find
that in-edges of a low-degree vertex v are assigned to the
same DC as the master of v. Each in-edge e of a high-degree
vertex is assigned to the same DC as the master of the vertex
on the other end of e. Thus, once the master locations of
all vertices are determined, we have a fixed partitioning plan.
Thus, the environment can be described purely using master
vertex locations and we define state = {L1, L2, · · · , L|V |},
where Li represents the master location of vertex i in the cur-
rent environment. With this state definition, we can uniquely
construct a graph partitioning plan in three steps: 1) assigning

Fig. 5. Design overview of our multi-agent reinforcement learning algorithm.

all vertices according to the current state; 2) assigning all edges
according to the rules of hybrid-cut and 3) creating mirrors for
vertices as needed.

We assign a learning agent for each vertex in the graph and
the agents take actions to assign vertices onto different DCs.
Thus, we define action = {DC1, DC2, · · · , DCM}, so that
each agent can choose one from the M DCs in each training
iteration to assign its vertex. Although we can also assign one
agent for multiple vertices, the solution space of each agent
increases exponentially with the number of vertices per agent
and each agent needs more time on exploration. Given a lim-
ited partitioning overhead, this could harm the effectiveness of
RL training. We define policys = {pa1

, pa2
, · · · , paM

}, which
gives the probability distribution of choosing different actions
under a given state s. Initially, pai =

1
M ,∀i ∈ {1, · · · ,M}.

Based on these definitions, we propose a multi-agent re-
inforcement learning algorithm to solve our hybrid-cut based
geo-distributed graph partitioning problem. Figure 5 shows the
overall structure of our algorithm. In each training iteration,
each agent goes through the five steps in the dashed box,
including score function computation, reinforcement signal
generation, probability update, action select and vertex migra-
tion. We introduce details of these steps in the next subsection.

C. Design Details of LA

In each training iteration, each agent performs the following
five steps to find a good DC for each vertex.

1) Score function: In this step, each agent computes a score
for its vertex in each DC, in order to guide the action selection
in later steps. The score for vertex v in DC i is calculated as:

Scoreiv = tw ∗ Tl − T i
a

Tl
+ cw ∗ Cl − Ci

a

Cl
∗ δ(Cl −B) (10)

where Tl represents the optimized inter-DC data transfer time
in the last iteration, calculated using Equation 1. T i

a represents
the optimized inter-DC data transfer time when moving vertex
v to DC i in the current iteration. Similarly, Cl and Ci

a

represent the optimized cost of inter-DC data transfer in the
last iteration and in the current iteration when moving vertex
v to DC i, respectively, calculated using Equation 4 and 5.
δ(x) is a boolean function which equals to 1 if x > 0 and 0
if otherwise.

We use two parameters tw and cw to trade-off the impor-
tance of performance and cost objectives in score function
computation. During different stages of the training, we have
different wishes in exploring the solution space. At early

stages, we prefer to explore as much as possible to find better
opportunities in optimizing the performance and cost objec-
tives. At latter stages, we have to take the budget constraint
into consideration to guarantee finding feasible solutions at the
end of the training. Thus, we define the tw and cw weights
adaptively according to the current iteration iter. Specifically,
we have cw = iter

Max Iter and tw = 1− cw ∗ δ(Cl −B). That
is, we try to achieve better optimization goal by focusing on
optimizing the performance of geo-distributed graph analytics
when the training is in early iterations and when the cost is
lower than the budget.

2) Reinforcement signal generation: After calculating the
score for different DCs, each agent generates reinforcement
signal for the last selected action accordingly. We define ρv
as the DC that has the highest score for vertex v and Si

v as
the reinforcement signal of vertex v for DC i. The value of
Si
v is 0 or 1, which corresponds to reward and penalty signals,

respectively. Specifically, as shown in the equation below, we
give reward to ρv and penalty to all the other DCs for each
vertex v.

Si
v =

{
0, if i = ρv

1, if i ̸= ρv
(11)

3) Probability update: In this step, each agent updates the
probability distribution of choosing different actions for its
vertex, in order to guide the action selection in the next step.
As we know that DC ρv receives the reward signal for vertex
v, the learning agent of v uses the following function to update
the probability distribution.

P j
v (n+ 1) =

{
P j
v (n) + α ∗ (1− P j

v (n)), if j = ρv

P j
v (n) ∗ (1− α), if j ̸= ρv

(12)

where P j
v (n) is the probability value defined for the action

of choosing DCj for vertex v at step n and α is the reward
parameter. This function increases the probabilities of actions
receiving reward signals and decreases the probabilities of
other actions.

In standard learning automata, the probability distribution
is also updated with the penalty signals (i.e., decrease the
probabilities of actions receiving penalty signals and increase
the probabilities of other actions). This method although can
better explore the solution space, leads to slow convergence.
Figure 6 shows the optimized inter-DC data transfer time of
our method with penalty update normalized to that of without
penalty update using 10 steps of training. The figure indicates
that the inter-DC data transfer time result of with penalty
update converges to the same as that of without penalty update
at around 300 iterations. This means that without penalty
update, we can have much faster convergence and almost the
same performance optimization result. Thus, in our method,
we adopt Equation 12 only for probability update.

4) Action selection: Each agent selects an action, namely
a DC for its vertex to migrate to, according to the updated
probability distribution. To compensate the sacrifice we have
made in the probability update step and achieve a good balance
between “exploration” and “exploitation”, we adopt the Upper

0 100 200 300 400 500
0
2
4
6
8

10

N
or

m
al

iz
ed

 D
at

a
Tr

an
sf

er
 T

im
e

Maximum num of iterations

Fig. 6. Red line represents the performance optimization results of using
penalty signals for probability update under different numbers of training
iterations. Blue dashed line represents the results of without penalty update
trained with 10 iterations.

Fig. 7. Detailed flow of the vertex migration step.

Confidence Bound (UCB) strategy [33] to choose the best
action. UCB trades off “exploration” and “exploitation” based
on how uncertain we are about a selection. Specifically, at
each iteration n, an agent update the upper confidence bound
value UCBn(a) of action a according to the below equation:

UCBn(a) =

{
inf, if Nn(a) = 0

Qn(a) + c
√

log(n)
Nn(a)

, if Nn(a) ̸= 0
(13)

where Qn(a) is the mean reward of action a when it was
selected prior to iteration n and Nn(a) is the number of times
that action a was selected.

√
log(n)
Nn(a)

actually represents how
uncertain we are about our selection and c is the confidence
value that controls the level of exploration according to our
uncertainty. Each agent selects the action with the largest UCB
value at each iteration.

5) Vertex migration: In this step, each agent performs
vertex migration according to the selected action. As agents
compute scores independently, the vertex migration action of
one agent changes the state of the entire environment and
may affect the optimality of actions taken by other agents.
Thus, to achieve good overall performance of graph analytics,
we cannot simply perform vertex migration according to the
selected action of each agent. Instead, we propose a global
optimization method for vertex migration.

To achieve global optimization, learning agents have to
cooperate and make vertex migration decisions in a sequen-
tial manner. Specifically, each agent is represented using
(v, av, Lv), namely vertex v, selected action av and the current
vertex location Lv . Given the set of agents, we iteratively apply
the selected action for each agent, and calculate the overall
inter-DC data transfer time and cost after applying the action.
If the optimization result gets worse, we roll back to the state
of before applying the action (i.e., move the vertex back to
its original location). We use Equation 10 to determine if the
optimization result is getting worse (i.e., score < 0, where

score is calculated using the time and cost results before and
after applying the action). As the actions of different agents are
applied sequentially, changes made to the environment by one
agent are visible to all the others. Thus, the vertex migration
achieves global optimization. Figure 7 shows the detailed flow.

After the five steps, if we have reached the maximum
number of steps or the training is converged, the algorithm
is finished. Otherwise, we continue the next training step.

V. ADAPTING OPTIMIZATION OVERHEAD

For large graphs such as Twitter which has over 40 million
vertices, the overhead of online RL training becomes very high
and hinders it from being applied to large graph partitioning
problems. Using multi-agents is our first step toward reducing
the overhead of RL. Further, we propose two optimization
techniques including batching and straggler mitigation to ef-
fectively reduce the overhead of RLCut without sacrificing
too much of the cost and performance optimization goals.
In order to adapt to graph changes at different frequencies,
we propose a sampling based optimization technique which
can automatically trade off between partitioning quality and
overhead for RLCut.

A. Batching technique

Taking a close look at the training overhead, we find that the
bottleneck mainly comes from the sequential vertex migration
step. The sequential requirement is set to guarantee global
optimization. However, in fact it is not necessary to require
strict sequential application of all actions, as the changes made
to the environment by a small number of vertex migrations
may not be significant enough to impact the decisions of
following agents. For example, one agent may decide not to
move the vertex in the vertex migration step and thus does not
change the environment at all. With this in mind, we propose
to batch multiple agents together, where the vertex migration
operations execute in parallel for agents in the same batch and
execute sequentially for agents in different batches. Although
we can design various greedy rules to decide which agents
to be batched together, running those greedy rules costs addi-
tional time. Instead, we find that randomly select the agents
that should be batched together can already generate good
optimization effectiveness with low overhead. Batch size is an
important parameter to balance the optimization effectiveness
and overhead. We study its impact in the evaluations.

B. Straggler mitigation

In our implementation, we use multiple threads to perform
the five training steps for different agents in parallel. To
achieve good performance of the parallel implementation,
one important task is to balance the workload of different
threads. A straightforward way of balancing the workload is
to equally distribute agents to different threads. However, this
does not guarantee load balancing as the computation overhead
of different agents differ a lot.

As agents need to cooperate in the vertex migration step,
there is actually a barrier before this step where all threads

0 100M 200M 300M 400M
0

200

400

600

800

1000

O
ve

rh
ea

d
 (s

ec
)

Number Of Agents

 Overhead

Fig. 8. The training overhead un-
der different number of agents par-
ticipating in training using Twitter
graph and PageRank algorithm.

0 20 40 60 80 100
0.6

0.7

0.8

0.9

1.0

1.1

1.2
 Normalized Data Transfer Time
 Overhead

k%

No
rm

al
iz

ed
 D

at
a

Tr
an

sf
er

 T
im

e

200

400

600

800

1000

1200

 O
ve

rh
ea

d
(s

ec
)

Fig. 9. Normalized data transfer time
and training overhead results using
agents with the lowest k% degrees par-
ticipating in the training.

synchronize. Thus, the load balancing task mainly needs to
mitigate stragglers in the first four steps. Our evaluations show
that, the score function calculation is the most time consuming
step of the four. Thus, we propose an agent assignment method
based on the score function computation complexity to achieve
good performance of our parallel implementation.

According to Equation 10, the score function computation
overhead of a vertex v mainly comes from updating T i

a and
Ci

a after moving v from its original location Lv to DC i.
Further according to Equation 1 and 7, calculating these two
values requires updating the upload and download data sizes
of DC Lv and DC i, the complexity of which is related to
the degree of vertex v. Thus, we propose to assign agents to
threads with the goal of minimizing V ar(

∑
v∈t

degreev), where

t is the thread ID and v is the vertex assigned to thread t.
We solve the problem in a greedy fashion. Specifically, we
schedule the next unassigned agent to the thread with the least
current load. The overhead of this simple greedy method is low
and thus is suitable to reduce the overhead of RLCut.

C. Sampling technique

Although the above two techniques can reduce the overhead
of RLCut, they do not meet the adaptivity goal which requires
the optimization overhead of RLCut to adapt to the graph
dynamicity. By studying the overhead of RLCut, we found that
the overhead is almost linearly related to the number of agents
participating in the training. For example, Figure 8 shows the
change of the RLCut overhead when optimizing Twitter graph
and PageRank algorithm using different numbers of agents in
the RL training. This motivates us to design a sampling-based
technique which dynamically tunes the number of agents in the
training according to graph dynamicity to achieve adaptivity.

We further found that, the training overhead of different
agents also vary, where agents for vertices with higher degrees
usually consume more time than agents with lower degrees.
Also, different agents contribute differently to the optimization
effectiveness of RLCut. We need to sample those agents which
can make greater contribution to the optimization goal at
a given training time. We denote such agents as important
agents. Through detailed study, we found that agents for
vertices with lower degrees are more important due to the fact
that high-degree vertices usually have more replicas spanning
in different DCs. Thus, there are less potential for agents

TABLE II
EXPERIMENTED REAL-WORLD GRAPHS.

Notation #Vertices #Edges

LiveJournal (LJ) 4,847,571 68,993,773
Orkut (OT) 3,072,441 117,185,083
uk-2005 (UK) 39,454,746 936,364,282
it-2004 (IT) 41,290,682 1,150,725,436
Twitter (TW) 41,652,230 1,468,365,182

to improve the optimization effectiveness by moving high-
degree vertices among DCs. This can also be verified with our
experiment as shown in Figure 9. We sample the top k% agents
with the lowest vertex degrees in RLCut and report the resulted
data transfer time of geo-distributed graph analytics and the
optimization overhead of RLCut. The data transfer time drops
sharply when k increases from 0 to 10 and remains almost
stable after that. This verifies that agents with high-degree
vertices contribute little to the performance optimization goal.

The next question is how to decide the sampling rate. We
propose an adaptive way to vary the sampling rate along
training steps. Specifically, we start the training with a small
sampling rate SR0 = 1%, and record the training time t0.
Given a required optimization overhead Topt, we calculate SRi

for the i-th training step as follows.

SRi =
Topt −

∑i−1
k=0 tk

Itermax − i
∗ 1

i

i−1∑
j=0

SRj

tj
(14)

where Itermax is the maximum number of training iterations.
That is, we use the sampling rate and training overhead data of
past iterations to estimate the optimal sampling rate in future
iterations, assuming that the training overhead of one iteration
is proportional to its sampling rate.

With the above three techniques, we are able to adaptively
reduce the optimization overhead of RLCut and make it
applicable to large dynamic graph partitioning problems.

VI. EVALUATION

We evaluate the effectiveness and efficiency of RLCut using
both real Amazon EC2 cloud and a cloud simulator. To em-
ulate the congestion-free network model, we limit the uplink
and downlink bandwidths of the instances to be smaller than
the WAN bandwidth. The limited bandwidths are proportional
to their original bandwidths. We integrate RLCut into Power-
lyra. We adopt a multi-threaded implementation to parallelize
the multi-agent training of RLCut. Vertex-cut based graph
partitioning methods are experimented using PowerGraph [3].

A. Experimental Setup

1) Dataset: We experimented with five large real-world
graphs selected from open source datasets [29], [18], which
are representative graphs in social networks and web graphs.
Table II gives details of the datasets.

2) Graph algorithms: We adopt three graph algorithms
which are widely used in different areas, including Pagerank
(PR) [34], Single Source Shortest Path (SSSP) [35] and
Subgraph Isomorphism (SI) [36]. PR is widely used in web

information retrieval to evaluate the relative importance of
webpages. SSSP finds the shortest paths starting from a single
source to all other vertices in the graph. SI is used to find the
subgraphs matching certain graph pattern in a large graph.

3) Comparisons: We compare RLCut with the following
state-of-the-art graph partitioning methods, where the first
five algorithms are designed for static graph partitioning and
Spinner can be used for dynamic graph partitioning.

• RandPG [3] achieves balanced p-way vertex-cut by ran-
domly assigning all edges to p partitions.

• Geo-Cut [1] is a heuristic-based vertex-cut algorithm
aiming at optimizing the performance of geo-distributed
graph analytics while satisfying the WAN usage budget.

• HashPL [6] and Ginger [6] are both balanced p-way
hybrid-cut algorithms which are using hash-based and
greedy-based vertex assignments, respectively.

• Revolver [37] is an edge-cut algorithm which also uses
LA algorithm to assign vertices to partitions.

• Spinner [7] is an edge-cut algorithm based on label
propagation algorithm to achieve scalable and adaptive
partitioning.

4) Configurations: We use both real cloud and cloud sim-
ulator to evaluate the effectiveness of RLCut.

Real cloud experiments (Exp#1). We select eight regions
of Amazon EC2 as the geo-distributed DCs, namely US East
(USE), US West Oregon (OR), US West North California
(NC), EU Ireland (EU), Asia Pacific Singapore (SIN), Asia
Pacific Tokyo (TKY), Asia Pacific Sydney (SYD) and South
America (SA). In each region, we construct a cluster of five
cc2.8xlarge EC2 instances. In all experiments, we compare the
performance and monetary cost of graph algorithms optimized
by RLCut and the comparisons. To set the budget parameter,
we first calculate the lowest cost of moving all graph data
into a single DC (i.e., the cost of centralized graph analytics)
and set the default budget to 40% of the calculated cost. The
required optimization overhead Topt is set to the overhead of
Ginger by default. The batch size is set to 48 and maximum
number of training steps is 10 by default. All performance
results are normalized to those of RandPG and cost results
are normalized to the budget, if not otherwise specified.

Simulations. To have more detailed and controlled ex-
periments, we perform four sets of simulations to evalu-
ate the sensitivity of RLCut to the budget (Exp#2), batch
size parameters (Exp#3), required optimization overhead Topt

(Exp#4) and graph dynamicity (Exp#5). For all sensitivity
studies, we construct eight geo-distributed DCs to simulate the
real Amazon EC2 environment using the measured network
bandwidths and prices. All cost results are normalized to the
budget if not otherwise specified.

First, we study the impact of the budget constraint to the
effectiveness of RLCut on reducing inter-DC data transfer time
of geo-distributed graph analytics. Specifically, we vary the
budget from 1%, 10%, 40% to 50% of the data movement cost
of centralized execution. We compare RLCut with Ginger and
Geo-Cut using the Orkut graph and PageRank algorithm. All
performance results are normalized to those of Ginger.

LiveJournal

Orkut
uk-2005

it-2004
Twitter

0.0

0.1

0.2

0.3

0.4

No
rm

al
iz

ed
 D

at
a

Tr
an

sf
er

 T
im

e

(a) Pagerank

LiveJournal

Orkut
uk-2005

it-2004
Twitter

0.0

0.1

0.2

0.3

0.4

No
rm

al
iz

ed
 D

at
a

Tr
an

sf
er

 T
im

e

0.
47

0.
47

(b) Subgraph

 RLCut

(c) SSSP

Fig. 10. (Exp#1) Normalized data transfer time optimization results obtained on Amazon EC2.

LiveJournal

Orkut
uk-2005

it-2004
Twitter

0

1

2

3

4

5

No
rm

al
iz

ed
 M

on
et

ar
y

Co
st

(a) Pagerank

LiveJournal

Orkut
uk-2005

it-2004
Twitter

0

1

2

3

4

5
No

rm
al

iz
ed

 M
on

et
ar

y
Co

st

(b) Subgraph

 RLCut

(c) SSSP

Fig. 11. (Exp#1) Normalized overall monetary cost optimization results obtained on Amazon EC2.

Second, we study the impact of the batch size parameter to
the trade-off between optimization effectiveness and overhead
of RLCut. Again, we use the large size Twitter graph and
increase the batch size from 1, 2, 4, 8, 16, 32 to 48, where
48 is the number of cores on our testbed. To clearly show the
impact of batch size, we fix the sampling rate to 10% in all
training iterations. We repeat each set of experiments for ten
times and report the average results. All performance results
are normalized to those when the batch size is 1.

Third, we study the impact of the required optimization
overhead Topt to the effectiveness of RLCut using Twitter
graph. Specifically, we vary Topt from 1x, 10x, 20x to 50x of
the optimization overhead of Ginger. All performance results
are normalized to those when Topt is set to 1x.

Finally, we compare RLCut with Spinner to study the
adaptivity of RLCut on partitioning dynamic graphs. We
construct dynamic graphs by inserting edges to an initial
graph. Specifically, we load 70% of LiveJournal edges as the
initial graph and insert 1%, 5%, 10%, 15%, 20%, 25%, and
30% of the rest edges to synthesize graphs with different
dynamicity. We assume all the new edges are coming in a
time window with the same length, and are expected to be
inserted quickly into the partitions of the initial graph. We set
the time window to 60 seconds. We adopt RLCut and Spinner
to perform the initial partitioning and the adaptive partitioning
separately, and normalize all performance results to those of
Spinner when the number of inserted edges is 1%.

B. Overall Evaluation Results (Exp#1)

Figures 10 and 11 present the normalized inter-DC data
transfer time and monetary cost optimization results obtained
by the compared algorithms on Amazon EC2. Note that, as
the overhead of Geo-Cut and Revolver are much larger than
the other comparisons, we only present their results for the
relatively small LiveJournal and Orkut graphs. We have the
following observations.

First, RLCut obtains the lowest inter-DC data transfer
time results among all compared algorithms for all settings.
Specifically, RLCut reduces the data transfer time by 90%-
100%, 74%-88%, 41%-95%, 10%-48% and 43%-82% over
RandPG, Geo-Cut, HashPL, Ginger and Revolver, respectively.
RLCut is able to satisfy the budget constraint under all settings
while both HashPL and Ginger obtain very high inter-DC
data transfer cost (almost as high as the cost of moving
all graph data into a single DC). This shows that existing
partitioning algorithms designed for a single DC could easily
lead to large cost in geo-distributed environment. Although
Geo-Cut can satisfy the budget constraint, it obtains much
worse performance results compared to RLCut with a much
larger optimization overhead. The reason that RandPG obtains
low monetary cost is due to its large replication factor. For
example, the average vertex replication factor optimized by
RandPG for Twitter graph and PageRank is 4.4 while that of
HashPL, Ginger and RLCut are 2.8, 2.2 and 2.4, respectively.
A larger replication factor can lead to higher runtime inter-

TABLE III
(EXP#1) OPTIMIZATION OVERHEAD (SEC) OF DIFFERENT PARTITIONING

METHODS USING PAGERANK ALGORITHM ON AMAZON EC2.

RandPG Geo-Cut HashPL Ginger Revolver RLCut

LJ 6 338 7 15 1760 15
OT 9 525 9 20 1770 20
UK 143 - 141 294 - 294
IT 195 - 204 397 - 395
TW 305 - 312 613 - 618

1% 10% 40% 50%
0.0

0.5

1.0

1.5

No
rm

al
iz

ed
 D

at
a

Tr
an

sf
er

 T
im

e

Budget

 Geo-Cut
 Ginger
 RLCut

4.
80

3.
96

2.
99

2.
99

(a) Data Transfer Time

1% 10% 40% 50%
0

1

2

3

4

No
rm

al
iz

ed
 M

on
et

ar
y

Co
st

Budget

 Geo-Cut
 Ginger
 RLCut

12
2

7.
02

81
7E

-4

12
.2

(b) Monetary Cost
Fig. 12. (Exp#2) Sensitivity study on the budget constraint using Orkut and
PageRank.

DC data traffic but less input data movement, which is more
important to the overall cost results.

Second, hybrid-cut based partitioning methods obtain much
lower inter-DC data transfer time compared to the vertex-
cut based partitioning methods. For example, RandPG and
HashPL are both hash-based balanced graph partitioning meth-
ods. However, the hybrid-cut based HashPL obtains much
lower inter-DC data transfer time than the vertex-cut based
RandPG under all settings. This is mainly due to the lower
WAN usage of the hybrid-cut model compared to vertex-
cut. We looked into the runtime inter-DC data transfer size
optimized by RandPG and HashPL for different graphs using
PageRank algorithm, where HashPL reduces the data transfer
size by up to 87% compared to RandPG.

Third, RLCut can well satisfy the user-defined requirement
on optimization overhead. Table III shows the optimization
overhead of different partitioning algorithms on the five graphs
using Pagerank on Amazon EC2. The overhead of RLCut is
almost the same as that of Ginger, which is used as the Topt

constraint. This demonstrates that our adaptive sampling tech-
nique is effective on achieving trade-off between optimization
effectiveness and efficiency of RLCut. In Section VI-C, we
further perform sensitivity studies on the Topt parameter to
show its impact to RLCut.

C. Sensitivity Study

1) Budget constraint (Exp#2): As the overhead of Geo-
Cut is much larger than the other compared algorithms, we
use the Orkut graph for this experiment. Figure 12 shows
the normalized inter-DC data transfer time and monetary cost
results optimized by three comparisons using Orkut graph and
PageRank algorithm. Overall, RLCut obtains the best perfor-
mance and cost optimization results among all. It reduces the

TABLE IV
(EXP#3) OPTIMIZATION OVERHEAD (SEC) OF RLCUT WITH DIFFERENT

BATCH SIZES FOR TWITTER GRAPH AND PAGERANK ALGORITHM.

Batch size 1 2 4 8 16 32 48

Overhead 735 646 505 421 381 333 300

1x 10x 20x 50x
0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 D
at

a
Tr

an
sf

er
 T

im
e

Topt

 Pagerank
 Subgraph
 SSSP

(a) Data Transfer Time

1x 10x 20x 50x
0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 M
on

et
ar

y
C

os
t

Topt

 Pagerank
 Subgraph
 SSSP

(b) Monetary Cost
Fig. 13. (Exp#4) Sensitivity study on the Topt parameter using Twitter graph.

data transfer time by 85%-89% and 47%-60% over Geo-Cut
and Ginger, respectively. We have the following observations.

First, when the budget increases, RLCut is able to obtain
better performance optimization results and hence higher inter-
DC data transfer time reduction over Ginger. This is because
when the budget is loose, RLCut has a larger space to
search for a good solution. It also demonstrates the ability of
RLCut to well explore the solution space. Although Geo-Cut
is also able to obtain better performance optimization when
the budget is loose, RLCut outperforms Geo-Cut under all
settings. The same observation is also found on the monetary
cost optimization results. Second, when the budget is larger
than 40%, the optimization results of RLCut does not improve
much. This is because the required optimization overhead is
low, which hinders RLCut from searching a larger space to
find a better solution. Finally, RLCut can satisfy the budget
constraint under all settings. Even with a tight budget of 1%, it
obtains 47% performance improvement over Ginger, the best-
performing comparison, with much lower monetary cost.

2) Batch size (Exp#3): With different batch sizes, the
variances of inter-DC data transfer time and monetary cost
results optimized by RLCut for Twitter graph are lower than
1%, meaning that the batch size parameter does not have much
impact on the performance and cost optimization effectiveness
of RLCut. On the other hand, a large batch size greatly reduces
the optimization overhead of RLCut as shown in Table IV.
However, if we continue to increase the batch size to be
larger than 48 (the number of cores), the overhead of RLCut
will dramatically increase due to the large thread management
overhead such as context switch. In our experiments, we set
the batch size to 48 by default.

3) Required optimization overhead (Exp#4): Figure 13
shows the normalized inter-DC data transfer time and mon-
etary cost optimization results of RLCut when the required
optimization overhead Topt increases from 1x to 50x of the
overhead of Ginger. Specifically, the inter-DC data transfer

0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

Sa
m

pl
in

g
R

at
e

Iteration

 Topt=1x
 Topt=10x
 Topt=20x
 Topt=50x

(a) Sampling rate adaptively chosen
per iteration

0 1 2 3 4 5 6 7 8 9
0

2

4

6

8

10

T/
SR

(x
10

3)

Iteration

 Topt=1x
 Topt=10x
 Topt=20x
 Topt=50x

(b) Proportion between training over-
head and sampling rate per iteration

Fig. 14. (Exp#4) Detailed study on sampling under different Topt.

0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

No
rm

al
iz

ed
 D

at
a

Tr
an

sf
er

 T
im

e

New Edges (%)

 Spinner
 RLCut

1 5 10 15 20 25 30

(a) Data Transfer Time

1 5 10 15 20 25 30
0

20

40

60

80

100

O
ve

rh
ea

d
(s

ec
)

New Edges (%)

 Spinner
 RLCut

(b) Overhead

Fig. 15. (Exp#5) Sensitivity study on graph dynamicity using LiveJournal
and PageRank. Blue line in (b) represents time window size.

time optimized by RLCut decreases by up to 26%, 32% and
43% when Topt increases from 1x to 10x, 20x and 50x,
respectively. This is because when the required overhead is
high, RLCut can allow more agents exploring the solution
space to find a good solution. We look into the sampling
rates adaptively chosen at each training iteration for different
Topt as shown in Figure 14 (a). Clearly, the average sampling
rate per iteration is high when Topt is large, which verifies
our analysis. Another observation is that, the sampling rate
is increasing along training iterations. We dig deeper into the
results and find that the proportion between training overhead
and sampling rate is not stable in different iterations. As shown
in Figure 14 (b), the proportion is smaller at later iterations.
This is because at later training iterations, the optimization is
getting close to convergence. As a result, fewer vertices will
be migrated and the computation time needed for each agent
becomes low. We plan to use such observations to improve
our adaptive sampling technique in future work.

4) Graph dynamicity (Exp#5): In this experiment, we as-
sume that 1%-30% of new edges arrive in a 60-second time
window which requires the graph partitioning algorithm to
complete re-partitioning within 60 seconds (i.e., Topt = 60s).
Figure 15 shows the normalized data transfer time and over-
head optimized by RLCut and Spinner with different graph
update frequencies. We have two observations.

First, according to Figure 15(a), RLCut can achieve much
better performance optimization results than Spinner. Specif-
ically, RLCut reduces the data transfer time by 43%-60%

compared to Spinner. Further, with more new edges coming,
RLCut is able to maintain stable optimization quality while
Spinner leads to poorer performance optimization results when
there are more edges to insert. Second, according to Fig-
ure 15(b), RLCut can satisfy the required optimization over-
head at all times. In contrary, Spinner wastes the optimization
time for further improving optimization effectiveness when
the graph update frequency is low and violate the required
optimization overhead when the graph update frequency is
high. In a real dynamic environment, this could lead to
more graph updates queuing in the system and eventually
lead to even worse optimization results. Experiments on edge
deletions have shown similar observations.

VII. CONCLUSION

We study the graph partitioning problem in geo-distributed
environments, which is an important problem to the perfor-
mance and cost optimization of graph analytics. However, no
existing partitioning can generate good partitioning solutions
for our problem, due to the high problem complexity from geo-
distributed environments, large graph sizes and the differenti-
ated graph partitioning model. Further, for large-size dynamic
graphs which can have different update frequencies, existing
dynamic partitioning methods which are based on best-efforts
no longer work.

Encouraged by the success of Reinforcement Learning (RL)
in many scheduling problems, we propose to use RL to help
taming the complexity of the problem. To obtain good per-
formance and cost optimizations with comparable overhead,
we propose an adaptive multi-agent learning algorithm named
RLCut based on Learning Automata (LA). RLCut incorporates
several techniques to adaptively trade-off the optimization
effectiveness and user-defined partitioning overhead. Our ex-
periments using real cloud DCs and real-world graphs show
that, compared to state-of-the-art partitioning methods using
different partitioning models, RLCut improves the perfor-
mance optimization results by 10%-100% with comparable
overhead. When users tolerate longer partitioning overhead,
RLCut is able to further improve the performance of geo-
distributed graph analytics by up to 43%. When varying the
graph changes at different frequencies, RLCut can improve
the performance optimization results by up to 60% compared
to state-of-the-art dynamic partitioning method [7]. As future
work, we plan to improve our adaptive optimization techniques
to better explore the solution space.

ACKNOWLEDGEMENT

This work is supported by the National Natural Sci-
ence Foundation of China (No. 62172282, 62072311 and
U2001212), Guangdong Basic and Applied Basic Re-
search Foundation 2020B1515120028, Shenzhen Project
JCYJ20210324094402008 and JCYJ20210324093212034, and
the Tencent “Rhinoceros Birds” - Scientific Research Founda-
tion for Young Teachers of Shenzhen University. Bingsheng’s
work is in part supported by a research grant (ECT-RP1)
in Advanced Research and Technology Innovation Centre
(ARTIC) in NUS. Rui Mao is the corresponding author.

REFERENCES

[1] A. C. Zhou, S. Ibrahim, and B. He, “On achieving efficient data transfer
for graph processing in geo-distributed datacenters,” in ICDCS ’17,
2017, pp. 1397–1407.

[2] C. Mayer, M. A. Tariq, C. Li, and K. Rothermel, “GrapH: Heterogeneity-
aware graph computation with adaptive partitioning,” in ICDCS ’16,
2016, pp. 118–128.

[3] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin, “Pow-
ergraph: Distributed graph-parallel computation on natural graphs,” in
OSDI’12, 2012, pp. 17–30.

[4] Y. Low, J. E. Gonzalez, A. Kyrola, D. Bickson, C. E. Guestrin,
and J. Hellerstein, “Graphlab: A new framework for parallel machine
learning,” in UAI ’10, 2010, p. 340–349.

[5] C. Tsourakakis, C. Gkantsidis, B. Radunovic, and M. Vojnovic, “Fennel:
Streaming graph partitioning for massive scale graphs,” in WSDM ’14,
2014, p. 333–342.

[6] R. Chen, J. Shi, Y. Chen, and H. Chen, “Powerlyra: Differentiated graph
computation and partitioning on skewed graphs,” in EuroSys ’15, 2015,
pp. 1–15.

[7] C. Tsourakakis, C. Gkantsidis, B. Radunovic, and M. Vojnovic, “Spin-
ner: Scalable graph partitioning in the cloud,” in ICDE ’17, 2017, pp.
1083–1094.

[8] S. Liu, L. Chen, B. Li, and A. Carnegie, “A hierarchical synchronous
parallel model for wide-area graph analytics,” in INFOCOM ’18, 2018,
pp. 531–539.

[9] A. C. Zhou, B. Shen, Y. Xiao, S. Ibrahim, and B. He, “Cost-aware
partitioning for efficient large graph processing in geo-distributed data-
centers,” IEEE TPDS, vol. 31, no. 7, pp. 1707–1723, 2020.

[10] N. Xu, B. Cui, L. Chen, Z. Huang, and Y. Shao, “Heterogeneous
environment aware streaming graph partitioning,” IEEE TKDE, vol. 27,
no. 6, pp. 1560–1572, 2015.

[11] L. Vaquero, F. Cuadrado, D. Logothetis, and C. Martella, “Adaptive
partitioning for large-scale dynamic graphs,” in ICDCS ’14, 2014, pp.
144–153.

[12] H. Mao, M. Schwarzkopf, S. B. Venkatakrishnan, Z. Meng, and M. Al-
izadeh, “Learning scheduling algorithms for data processing clusters,”
in SIGCOMM ’19, 2019, pp. 270–288.

[13] C. Wu, C. Ji, Q. Li, C. Gao, R. Pan, C. Fu, L. Shi, and C. J. Xue,
“Maximizing i/o throughput and minimizing performance variation via
reinforcement learning based i/o merging for ssds,” IEEE TOC, vol. 69,
no. 1, pp. 72–86, 2019.

[14] J. Zhang, Y. Liu, K. Zhou, G. Li et al., “An end-to-end automatic cloud
database tuning system using deep reinforcement learning,” in SIGMOD
’19, 2019, pp. 415–432.

[15] Y. Li, K. Chang, O. Bel, E. L. Miller, and D. D. Long, “Capes:
Unsupervised storage performance tuning using neural network-based
deep reinforcement learning,” in SC ’17, 2017.

[16] S. Sahoo, B. Sahoo, and A. K. Turuk, “A learning automata-based
scheduling for deadline sensitive task in the cloud,” IEEE TSC, pp. 1–1,
2019.

[17] M. Tan, Multi-Agent Reinforcement Learning: Independent vs. Cooper-
ative Agents. Morgan Kaufmann Publishers Inc., 1997, p. 487–494.

[18] P. Boldi, B. Codenotti, M. Santini, and S. Vigna, “Ubicrawler: A scalable
fully distributed web crawler,” Software: Practice & Experience, vol. 34,
no. 8, pp. 711–726, 2004.

[19] A. C. Zhou, Y. Xiao, Y. Gong, B. He, J. Zhai, and R. Mao, “Privacy
regulation aware process mapping in geo-distributed cloud data centers,”
IEEE TPDS, vol. 30, no. 8, pp. 1872–1888, 2019.

[20] H. Kwak, C. Lee, H. Park, and S. Moon, “What is Twitter, a social
network or a news media?” in WWW ’10, 2010, pp. 591–600.

[21] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski, “Pregel: A system for large-scale graph processing,”
in SIGMOD ’10, 2010, pp. 135–146.

[22] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin,
and I. Stoica, “Graphx: Graph processing in a distributed dataflow
framework,” in OSDI ’14, 2014, pp. 599–613.

[23] N. Xu, L. Chen, and B. Cui, “LogGP: A log-based dynamic graph
partitioning method,” Proceedings of the VLDB Endowment, vol. 7,
no. 14, pp. 1917–1928, 2014.

[24] D. Nicoara, S. Kamali, K. Daudjee, and L. Chen, “Hermes: Dynamic
partitioning for distributed social network graph databases.” in EDBT,
2015, pp. 25–36.

[25] A. Zheng, A. Labrinidis, and P. K. Chrysanthis, “Planar: Parallel
lightweight architecture-aware adaptive graph repartitioning,” in 2016
IEEE 32nd International Conference on Data Engineering (ICDE),
2016, pp. 121–132.

[26] J. Huang and D. J. Abadi, “Leopard: Lightweight edge-oriented parti-
tioning and replication for dynamic graphs,” Proc. VLDB Endow., vol. 9,
no. 7, p. 540–551, Mar. 2016.

[27] H. Li, H. Yuan, J. Huang, J. Cui, X. Ma, S. Wang, J. Yoo, and P. S. Yu,
“Group reassignment for dynamic edge partitioning,” IEEE Transactions
on Parallel and Distributed Systems, vol. 32, no. 10, pp. 2477–2490,
2021.

[28] W. Fan, M. Liu, C. Tian, R. Xu, and J. Zhou, “Incrementalization of
graph partitioning algorithms,” Proceedings of the VLDB Endowment,
vol. 13, no. 8, pp. 1261–1274, 2020.

[29] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, Jun. 2014.

[30] Q. Pu, G. Ananthanarayanan, P. Bodik, S. Kandula, A. Akella, P. Bahl,
and I. Stoica, “Low latency geo-distributed data analytics,” in SIG-
COMM ’15, 2015, pp. 421–434.

[31] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle, S. Stuart,
and A. Vahdat, “B4: Experience with a globally-deployed software
defined wan,” in SIGCOMM ’13, 2013, pp. 3–14.

[32] K. S. Narendra and M. A. Thathachar, Learning automata: an introduc-
tion. Courier corporation, 2012.

[33] N. Srinivas, A. Krause, S. Kakade, and M. Seeger, “Gaussian process
optimization in the bandit setting: No regret and experimental design,”
in ICML’10, 2010, p. 1015–1022.

[34] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web
search engine,” in WWW ’98, 1998, pp. 107–117.

[35] D. P. Bertsekas, F. Guerriero, and R. Musmanno, “Parallel asynchronous
label-correcting methods for shortest paths,” Journal of Optimization
Theory and Applications, vol. 88, no. 2, pp. 297–320, 1996.

[36] S. Ma, Y. Cao, W. Fan, J. Huai, and T. Wo, “Capturing topology in graph
pattern matching,” in VLDB ’11, vol. 5, no. 4, 2011, pp. 310–321.

[37] M. H. Mofrad, R. Melhem, and M. Hammoud, “Revolver: vertex-centric
graph partitioning using reinforcement learning,” in IEEE CLOUD ’18,
2018, pp. 818–821.

