
Accepted Manuscript

Improving the effectiveness of burst buffers for big data processing in
HPC systems with Eley

Orcun Yildiz, Amelie Chi Zhou, Shadi Ibrahim

PII: S0167-739X(17)31730-2
DOI: https://doi.org/10.1016/j.future.2018.03.029
Reference: FUTURE 4041

To appear in: Future Generation Computer Systems

Received date : 31 July 2017
Revised date : 20 February 2018
Accepted date : 14 March 2018

Please cite this article as: O. Yildiz, A.C. Zhou, S. Ibrahim, Improving the effectiveness of burst
buffers for big data processing in HPC systems with Eley, Future Generation Computer Systems
(2018), https://doi.org/10.1016/j.future.2018.03.029

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form.
Please note that during the production process errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.future.2018.03.029


Future Generation Computer Systems 00 (2018) 1–17

Future Generation
Computer Systems

Improving the Effectiveness of Burst Buffers for Big Data
Processing in HPC Systems with Eley

Orcun Yildiz1 , Amelie Chi Zhou2 , Shadi Ibrahim3∗

1 Inria, Univ Rennes, CNRS, IRISA, Rennes, France

2 Shenzhen University, China

3 Inria, IMT Atlantique, LS2N, Nantes, France

Abstract
Burst Buffer is an effective solution for reducing the data transfer time and the I/O interference in HPC systems. Extending Burst
Buffers (BBs) to handle Big Data applications is challenging because BBs must account for the large data inputs of Big Data
applications and the Quality-of-Service (QoS) of HPC applications – which are considered as first-class citizens in HPC systems.
Existing BBs focus on only intermediate data of Big Data applications and incur a high performance degradation of both Big Data
and HPC applications. We present Eley, a burst buffer solution that helps to accelerate the performance of Big Data applications
while guaranteeing the QoS of HPC applications. To achieve this goal, Eley embraces interference-aware prefetching technique
that makes reading data input faster while introducing low interference for HPC applications. Evaluations using a wide range of
Big Data and HPC applications demonstrate that Eley improves the performance of Big Data applications by up to 30% compared
to existing BBs while maintaining the QoS of HPC applications.

c© 2018 Published by Elsevier Ltd.

Keywords: HPC; MapReduce; Big Data; Parallel File Systems; Burst Buffers; Interference; Prefetch.

1. Introduction

With the arrival of the era of Big Data, we have witnessed the emergence of a new scalable data management and
processing paradigm through the MapReduce model [1, 2] for data-intensive processing. MapReduce is adopted in
both industry and academia due to its simplicity, transparent fault tolerance and scalability. For instance, Carnegie
Mellon University is using MapReduce clusters for data analysis on several scientific domains including computa-
tional astrophysics, computational neurolinguistics, natural language processing and social networking analysis [3].
The success of MapReduce led to the emergence of new types of applications (e.g., stream data processing, graph
processing, analysis of large scale simulation data) where obtaining timely and accurate responses is a must. How-
ever, commodity machines-based Big Data environments reach their limit due to being failure-prone and providing
moderate performances.

Why Big Data processing on HPC Systems? High performance computing (HPC) systems are known for providing
the maximum computing capability. They are equipped with high-speed networks, thousands of nodes with many

∗Corresponding author
Email address: shadi.ibrahim@inria.fr (Shadi Ibrahim3)

1



/ Future Generation Computer Systems 00 (2018) 1–17 2

cores and large memories [4, 5]. For instance, Sunway TaihuLight, No.1 in the top 500 supercomputers list, is a
10,649,600 processor supercomputer with a Linpack performance of 93 petaflop/s1. Given the high performance
nature of HPC systems and the increased need of the Big Data community for fast Big Data processing, the Big Data
community is rapidly moving towards ways to leverage these HPC systems [6, 7].

Big Data processing on HPC Systems: Challenges. Introducing Big Data processing to these systems is not trivial;
it comes with its own set of challenges. First, one should be aware of the different architectural designs in current
Big Data processing and HPC systems. Big Data processing clusters have shared-nothing architecture (e.g., nodes
with individual disks attached) and thus they can co-locate the data and compute resources on the same machine (i.e.,
data locality) when performing the task scheduling. On the other hand, HPC clusters employ a shared architecture
(e.g., parallel file systems) [8] which results in separation of data resources from the compute nodes. Big Data
systems are mainly optimized to sustain high data locality which is the major contributing factor to the application
performance [9, 10, 11]. However, the same approach on the data locality can not be applied in HPC systems since
all the nodes have an equivalent distance to the input data. In addition, employing a shared parallel file system also
results in remote data transfers through network when Big Data applications performing I/O thus resulting in a higher
latency. Moreover, I/O interference (i.e., performance degradation observed by any single application/task running in
contention with other applications/tasks on the same platform [12, 13]) is a well-known performance bottleneck for
HPC applications due to the large size and shared architecture of HPC clusters. Hence, the impact of both latency and
interference will be amplified, if HPC systems are to serve as the underlying infrastructure for Big Data processing.

Burst Buffers for Big Data applications in HPC Systems: Current status. Many research efforts have been dedi-
cated to overcome the high latency problem by introducing an intermediate layer — Burst Buffers (BBs) — with high
throughput storage devices [14, 15, 16, 17] especially for storing the intermediate data (i.e., map output for batch jobs
and temporary output produced between stages for iterative jobs). For example, Islam et al. [14] utilized NVRAM as
an intermediate storage layer (i.e., burst buffer) between compute nodes and Lustre which improved the application
performance by 24%. Wang et al. [17] leveraged SSDs for storing the intermediate data. Chaimov et al. [15] used a
separate set of nodes (burst buffer nodes) with NVRAM as a storage space to achieve a better scalability by reducing
the latency when reading/writing the intermediate data. Unfortunately, aforementioned works ignore the importance
of input data despite the significant amount of work dedicated to improve the application performance by sustaining
high input data locality, as we mentioned previously. In addition, these works proposed the adoption of burst buffers in
a similar way to the traditional use of burst buffers on HPC systems which aim to minimize the I/O time by absorbing
the checkpointing data of scientific applications. In contrast, Big Data applications mostly run in batches therefore
there is a continuous interaction with the parallel file system for reading the input data. Lastly, none of these efforts
considered the interference problem which can contribute to a significant performance degradation — not only for Big
Data applications but also for the first class HPC applications — by up to 2.5x [12]. Hence, as we argue in this paper,
current efforts and solutions to extend burst buffers for Big Data applications in HPC systems may fail in practice to
achieve the desired performance and this may hinder the convergence of Big Data processing and HPC.

Contributions. In an attempt to (effectively) extend Burst Buffers for Big Data applications on HPC systems, in
this paper, we present Eley, a burst buffer solution that aims to accelerate the performance of Big Data applications
while guaranteeing the QoS of HPC applications. A typical job of Big Data applications consists of several iterations
(waves) depending on the total input size and the cluster capacity (i.e, the number of map tasks which can simultane-
ously run in the cluster). For example, if the cluster capacity is set to 100 map tasks where each map task processes one
block of 128 MB, a job of 100GB data inputs will be executed in 8 waves. This is common for large scale scientific
Big Data applications: during 9 months in a research cluster (i.e., M45) with 400 nodes [18], the amount of processed
data was almost 900 TBs and almost 100 of executed jobs have an input data of 4.9 TBs. Thus, Eley employs a
novel (prefetcher) technique that fetches data inputs of next iterations while computing nodes are still busy processing
data inputs of previous one. This allows to have data inputs to be stored on a low-latency device close to computing
nodes and therefore results in reducing the latency of reading data inputs of Big Data applications. However, data
prefetching may come at a high cost for the HPC applications: the continuous interaction with the parallel file system
(i.e., I/O read requests) may introduce a huge interference at the parallel file system level and thus end up with a
degraded and unpredictable performance for HPC applications. To this end, we design Eley to be interference-aware.

1 http://www.top500.org

2



/ Future Generation Computer Systems 00 (2018) 1–17 3

Specifically, we equip the prefetcher with five optimization actions including No Action, Full Delay, Partial Delay,
Scale Up and Scale Down. It iteratively chooses the best action to optimize the prefetching while guaranteeing the
pre-defined QoS requirement of HPC applications (i.e., the deadline constraint for the completion of each I/O phase).
We evaluate the effectiveness of Eley with both real system evaluations and simulations. With 5% QoS requirement
of the HPC application, Eley reduces the execution time of Big Data applications by up to 30% compared to the Naive
burst buffer solution (denoted as NaiveBB) [14, 15, 16, 17] while guaranteeing the QoS requirement. On the other
hand, the NaiveBB violates the QoS requirement by up to 58%.

In summary this paper makes the following contributions:

• We propose Eley, a burst buffer solution for reducing the latency of reading data inputs for Big Data applications
while maintaining the QoS of HPC applications. The intuition behind Eley is that, on the one hand, Big Data
applications are often executed in waves, thus, it is desirable to have data close to compute nodes once required.
On the other hand, the heavy I/O requests introduced by Big Data applications to the parallel file system may
adversely impact on the performance of the (high priority) HPC applications, thus it is important to alleviate
this impact as much as possible (Section 3).

• We introduce interference and performance models for both HPC and Big Data applications, in order to identify
the performance gain and the interference cost of the prefetching technique of Eley (Section 4). Based on these
two models, we propose an interference-aware prefetching technique that iteratively chooses in-between five
action to optimize the prefetching, in order to satisfy the QoS requirement of HPC while leading to a good
performance of Big Data application (Section 5).

• Evaluations using representative and widely used Big Data and HPC applications demonstrate the effectiveness
of Eley in obtaining shorter execution time for Big Data applications (shorter map phase) while maintaining
the QoS of HPC applications. We believe that these results are encouraging and will help to bring forward the
convergence between Big Data and HPC (Section 7).

2. Related Work

Early adoption of Big Data processing on HPC systems. Many research efforts have been dedicated to adopt
Hadoop [19], well-known open source MapReduce implementation, on HPC systems [20, 21, 22]. Researchers have
discussed solutions to extend data locality to parallel file system (i.e., PVFS [23]) through emulating HDFS [24]
on a HPC system by using PVFS [20] or proposing a new storage layer (in-memory storage) on top of PVFS [22].
Those solutions assume that computing nodes have dedicated disk, this however is not a typical configuration of HPC
system. Moreover, new MapReduce frameworks — beyond Hadoop — have been introduced such as MARIANE [25]
and Glasswing [26]. They mainly focus on exploiting multi-core CPU and GPUs. Although aforementioned works can
improve the performance of Big Data applications compared to a blind adoption of these applications on HPC systems,
they do not fully address the challenges (i.e., interference, high latency) and thus they are not able to efficiently
leverage HPC systems for Big Data processing.

Burst buffers for Big Data applications in HPC systems. Several works proposed adoption of burst buffers for
an efficient Big Data processing on HPC systems. Chaimov et al. [15] employed a NVRAM buffer between compute
nodes and Lustre file system in order to improve the scalability of Spark framework. Islam et al. [27] proposed using
Memcached as a burst buffer system to integrate HDFS with Lustre file system in a performance-efficient way. They
also evaluated the NVRAM performance as a burst buffer system in [14]. Wang et al. [17] performed an experimental
study where they investigated the characteristics of Spark on a HPC system with a special focus on the impact of the
storage architecture. Based on their findings, they proposed to use SSDs as a burst buffer to store the intermediate data.
As we demonstrated, however, although these studies are indeed important — without considering the interference
problem and the latency resulting from the input phase — they do not provide a complete solution for enabling efficient
Big Data processing on HPC systems.

Mitigating I/O interference in HPC systems. I/O interference in HPC systems is an important problem that can
seriously impact the performance of HPC applications. For several years researchers have been trying to mitigate
this interference problem. For example, Zhou et al. [28] present an I/O-aware batch scheduler that addresses the in-
terference problem at the level of batch scheduling. The batch scheduler schedules and coordinates the I/O requests

3



/ Future Generation Computer Systems 00 (2018) 1–17 4

Figure 1. System overview of Eley.

on the fly by considering the system state and I/O activities. Gainaru et al. [29] show the performance degradation
due to I/O congestion and propose a new scheduler that tries to eliminate this congestion by coordinating the I/O
requests depending on the application’s past behaviors and system characteristics. Boito et al. [30] propose AGIOS,
an I/O scheduling library for parallel file systems. AGIOS incorporates the applications’ access pattern information
into the scheduler based on the traces generated by the scheduler itself and uses this information to coordinate the I/O
requests in order to prevent congestion to the file system. [31] proposes several I/O scheduling policies at the appli-
cation level to mitigate I/O interference. These policies include dynamically partitioning the PFS resources among
applications and delaying the I/O requests without interrupting the computation by using burst buffers. Similarly to
these application-side scheduling solutions, we introduce an interference-aware prefetching scheme to minimize the
performance degradation resulting from the I/O interference between HPC and Big Data applications.

3. System Overview

In this section, we present an overview of the burst buffer solution (i.e., Eley) and describe our main design
principles.

3.1. Burst Buffer Enabled HPC System

With the convergence between Big Data and HPC, many Big Data applications are moving to HPC systems to
benefit from their high computation capabilities. Figure 1 shows a typical architecture of HPC system with burst
buffer enabled to address the high I/O latency challenge of Big Data applications on HPC. Eley is located between
compute nodes and parallel file system, where compute nodes only interact with the burst buffer nodes for all I/O
phases of the Big Data application, including reading input data and reading/writing intermediate data. Thus, the file
system level interference mainly comes from the I/O requests of burst buffer nodes and the HPC applications.

Different from the existing studies on burst buffer, in this paper, we instruct Eley to prefetch the input data of
Big Data applications to optimize the I/O performance of those applications. When we co-locate HPC and Big Data
applications, prefetching operations may interfere with the I/O operations of HPC applications. Thus, we design a
prefetcher component in the burst buffer to manage the prefetching of input data in a controlled manner. Specifi-
cally, our prefetcher component takes into consideration the file system level interference (i.e., based on the profiled
information about the compute and I/O times of both HPC and Big Data applications which is used for estimating
the interference) and makes optimization decisions before each prefetching operation, in order to optimize the per-
formance of Big Data applications while satisfying QoS requirements of HPC applications. Then, it initiates the
prefetching operations according to the optimized decisions. In each prefetching operation, the prefetcher fetches a
subset of the input data (i.e., one wave) for the next wave of computation. By doing so, we can overlap the I/O and

4



/ Future Generation Computer Systems 00 (2018) 1–17 5

computation phases of Big Data application to further hide the high latency of remote data accesses. We introduce the
optimization actions and decision making process of the prefetcher in the next section.

3.2. Design Principles

We follow the following principles when designing the burst buffer enabled HPC system, which aim to address
the challenges of running Big Data applications on HPC systems without introducing much interference to the HPC
applications.

Enabling efficient Big Data processing on HPC systems: The separation of storage resources from the compute
nodes in HPC systems requires repetitive data transfer through the network, which results in a high I/O latency. In
this paper, we focus on Big Data applications with huge input data sizes which are executed in multiple waves. Thus,
the high I/O latency can severely degrade the performance of Big Data applications on HPC systems. We mitigate the
latency problem by locating low-latency burst buffer devices (i.e., RAMDisk) close to the compute nodes to reduce
the latency of reading data inputs of Big Data applications.

Existing burst buffer studies mainly focus on mitigating the I/O latency on the intermediate data of Big Data
applications. However, by analyzing traces collected from three different research clusters, we observe that the inter-
mediate data size is smaller than 20% of the input data size for over 85% of the applications [18]. Thus, it is important
to also mitigate the high I/O latency in reading the input data. To this end, we equip our burst buffer with a prefetcher
component.

Guaranteeing QoS requirement of HPC applications: Running Big Data applications in HPC systems should not
introduce much interference to the HPC applications, which usually involve important scientific simulations. Thus,
one of our key design principles is to guarantee the QoS requirements of HPC applications while improving the I/O
performance of Big Data applications. We define the QoS requirement of HPC as the deadline constraint for the
completion of each I/O phase of HPC applications defined by the users. To this end, we equip our prefetcher with
interference-aware data transfer scheme to help satisfying our design objective.

4. Model Formulation

The I/O operations of Big Data applications can seriously degrade the I/O performance of concurrent HPC ap-
plications. Thus, in this section, we formally model the impact of interference on the I/O time of both Big Data and
HPC applications, in order to optimize the performance of Big Data while guaranteeing the QoS constraint of HPC
applications.

4.1. Performance Model for HPC Applications

Our model focuses on HPC applications with periodical behaviors. That is, the applications perform series of
computations and periodically checkpoint the computation results with an I/O time of Tio. Most of the HPC appli-
cations fall into this category of applications [32]. We assume that the profiles of HPC applications (e.g., I/O and
computation time when running individually) can be obtained at offline time using solutions such as Omnisc’IO [33].
We define the I/O time of a HPC application when co-locating with a Big Data application as Tcol.

T col
io = T alone

io + T int f
io × Ihpc (1)

where T alone
io is the time period that the HPC application performs I/O requests individually and T int f

io (T int f
io = Tio −

T alone
io ) is the time period that the HPC application is contending with the Big Data application for I/O resources. Ihpc

is the interference factor, defined as the ratio between the I/O time of the HPC application under contention and the
time for it to perform the same I/O operations alone (i.e., Ihpc > 1).

According to Equation 1, an important parameter for estimating the I/O performance of HPC application is the
interference factor. The I/O interference imposed by Big Data applications (i.e., prefetching) is affected by several
parameters, including the number of the burst buffer nodes performing prefetching (nbb) and the number of fetching
threads per node (ntr). Ihpc is also depending on the characteristics of the HPC application itself and the platform
where it is running. Thus, given an interfering Big Data application to the HPC (i.e., given a set of nbb and ntr

values), we can calculate Ihpc for the HPC application by profiling its I/O performance with and without contention

5



/ Future Generation Computer Systems 00 (2018) 1–17 6

from the Big Data application. However, offline profiling for each set of given nbb and ntr values is very costly. To
reduce the profiling cost, we decompose the interference into two levels, namely node-level (NI) and thread-level
(T I) interference, and assume that they are independent from each other. By profiling the two individually, we reduce
the profiling complexity from O(n × m) to O(n + m), supposing that n and m are the sample sizes for nbb and ntr,
respectively.

We profile the node-level and thread-level interference and record NI(nbb) and T I(ntr) values for different nbb and
ntr samples. Specifically, we perform prefetching using different numbers of nbb/ntr while fixing ntr/nbb to the default
with the HPC application performing checkpointing at the same time. We set the default value of both nbb and ntr to
1. For example, T I(2) is calculated as t2

t1
, where t1 and t2 are the I/O performance of HPC application when one burst

buffer is performing prefetching with 1 and 2 threads, respectively. Based on the above analysis, we can calculate the
interference factor for HPC as follows.

Ihpc(nbb, ntr) = T I(ntr) × NI(nbb) × Ihpc(1, 1) (2)

where Ihpc(1, 1) is profiled and calculated at offline time.

4.2. Performance Model for Big Data Applications
We provide a performance model for Big Data applications to estimate the prefetching time when using different

nbb and ntr values. Similarly to Equation 1, the prefetching time is also impacted by the contention duration with HPC
and the interference factor. We model the prefetching time when running Big Data application alone with nbb burst
buffer nodes and ntr threads per node as below.

Tpre f (nbb, ntr) = NS (nbb) × TS (ntr) × Tpre f (1, 1) (3)

where NS (nbb) and TS (ntr) represent the system scalability with respect to different number of nodes and number
of threads per node, respectively, with the assumption that the node-level and thread-level system scalability are
independent. We obtain the scalability values with system profiling using different nbb and ntr samples in the same
way as described in the last subsection. For example, NS (2) is calculated as t2

t1
, where t1 and t2 are the prefetching

time with one and two burst buffer nodes, respectively. Similarly, we obtain Tpre f (1, 1) by profiling the prefetching
time with a single burst buffer node and a single thread.

When co-located with HPC applications, the performance of Big Data applications can be modeled as below.

T col
pre f = T alone

pre f + T int f
pre f × Ibd (4)

Similarly to Equation 1, Ibd is the interference factor for Big Data application, defined as the ratio between the
prefetching time with and without co-location with HPC applications. We calculate Ibd(nbb, ntr) using offline profiling
similarly to Eqaution 2. Specifically, we profile T I(ntr) and NI(nbb) individually using the prefetching time under
different nbb and ntr values.

Further, we define the cost of prefetching for Big Data applications as the time that the prefetching cannot be
overlapped with the computation phase. To optimize the performance of Big Data, we aim to reduce the cost of
prefetching in order to hide the I/O latency of reading input data.

Cpre f =


T col

pre f − Tcpu , if T col
pre f ≥ Tcpu

0 , otherwise
(5)

where T col
pre f is the time of fetching input data for the next wave and Tcpu is the computation time of the current wave.

5. Interference-Aware Prefetching

Prefetching of Big Data applications imposes interference to the I/O operations of HPC applications and can
violate the QoS requirement of HPC applications. Thus, we propose a set of optimization actions and iteratively
choose the best action to optimize the prefetching, in order to satisfy the QoS requirement of HPC while leading to
a good performance of Big Data application. In the following, we first introduce the five optimization actions in the
action set and then introduce how to choose good actions to optimize prefetching.

6



/ Future Generation Computer Systems 00 (2018) 1–17 7

Figure 2. Use cases of five actions.

Name Description
No Action Start the prefetching as it is.

Full Delay
Delay prefetching to the end of the
I/O phase of HPC application.

Partial Delay
Delay prefetching for a fixed
amount of time.

Scale Up
Increase the number of prefetching
threads per node.

Scale Down
Decrease the number of total
prefetching threads.

Table 1. Details of the actions.

5.1. Action Set

We propose five optimization actions, including No Action, Full Delay, Partial Delay, Scale Up and Scale Down.
These actions are lightweight and common strategies for interference mitigation. Table 1 summarizes the definitions
of the five actions. Moreover, we illustrate these actions in Figure 2 where the x-axis represents time and y-axis
represents the bandwidth of the parallel file system shared between HPC and Big Data applications. The boxes
represent the I/O operations of HPC and Big Data applications. The width of boxes represents the completion time
and the height represents the acquired bandwidth of the I/O operations. Note that, in the illustration, both applications
start I/O operations at the same time. Next, we present the details of the five actions.

No Action performs the prefetching as it is, immediately after receiving the I/O request. We use it as the baseline
to show how the other actions optimize the prefetching operation. Thus, the completion time of the I/O operations for
Big Data and HPC are Tpre f × Ibd and Tio × Ihpc, respectively.

Full Delay delays the prefetching to the end of the I/O phase of HPC application as shown in Figure 2. While this
allows HPC application to perform its I/O operations alone and thus mitigates any interference, it can greatly harm the
performance of Big Data application when the HPC application has a long running I/O phase. The completion time
of the I/O operations for Big Data and HPC are Tpre f + Tio and Tio, respectively.

Partial Delay delays the prefetching for a certain amount of time td to meet the QoS requirement of the HPC
application. We calculate the optimized I/O completion time T col

io for HPC and T col
pre f for prefetching with td delay as

follows.
T col

io = td + (Tio − td) × Ihpc (6)

T col
pre f = Tpre f + (Tio − td) × Ihpc × (1 − 1

Ibd
) (7)

Scale Up increases the number of fetching threads per node. As shown in Figure 2, increasing the number of
total fetching threads can reduce the prefetching time with an increase on the acquired I/O bandwidth. Therefore,

7



/ Future Generation Computer Systems 00 (2018) 1–17 8

while this action reduces the interference time period of HPC and Big Data applications, it can also lead to a larger
performance degradation to HPC due to the higher interference factor Ihpc. Assume scale up increases the number
of fetching threads per node from n0 to n1, we calculate Tpre f , Ihpc and Ibd values for n1 threads based on the model
defined in Section 4 and calculate the optimized I/O completion time for both applications as follows.

T col
io = Tio + Tpre f × Ibd × (1 − 1

Ihpc
) (8)

T col
pre f = Tpre f × Ibd (9)

Scale Down decreases the number of total fetching threads from n0 to n1. While using less fetching threads can
diminish the impact of prefetching on the HPC application due to an expected smaller interference factor (Ihpc), it
can also lead to a significant poor I/O performance of the Big Data application due to the increased prefetching time
(Tpre f ). When n1 is smaller than the number of burst buffer nodes, we use n1 nodes and one thread per node for the
prefetching. Similarly to scale up, we calculate Tpre f , Ihpc and Ibd values for n1 threads, and calculate the optimized
I/O completion time for both applications as follows.

T col
io = Tio × Ihpc (10)

T col
pre f = Tpre f + Tio × Ihpc × (1 − 1

Ibd
) (11)

5.2. Decision Making

Given the optimization actions, we iteratively decide the optimal action for prefetching at the beginning of each
Big Data iteration, in order to reduce the cost of Big Data applications while satisfying the performance constraint of
HPC applications.

When making prefetching decisions, we estimate the cost of Big Data application and the I/O time of HPC ap-
plication for each action. For example, when estimating the cost of the partial delay action, we first calculate the
completion time of both HPC and Big Data applications with different td values using Equation 6 and 7. We then
select the td that leads to the minimum cost of Big Data while satisfying the deadline constraint of HPC for the delay
action and return its result as the result of partial delay. If we can find an action with a cost equal to zero for the Big
Data application and an I/O time less or equal to the deadline constraint for the HPC application, we simply adopt this
action without further checking the other actions. If none of the actions achieves zero cost for the Big Data application,
we choose the action with the minimum cost while satisfying the deadline constraint of the HPC application.

6. Experimental Methodology

We evaluate our burst buffer design using both real system experiments and simulations. We further describe the
experimental setup for both the real system and simulations.

6.1. Real System Setup

The empirical experiments were carried out on the Grid’5000 testbed [34]. We used the Rennes site; more specif-
ically we employed nodes belonging to the parasilo and paravance clusters. The nodes in these clusters are outfitted
with two 8-core Intel Xeon 2.4 GHz CPUs and 128 GB of RAM. We leveraged the 10 Gbps Ethernet network that
connects all nodes of these two clusters. Grid’5000 allows us to create an isolated environment in order to have full
control over the experiments and obtained results.

8



/ Future Generation Computer Systems 00 (2018) 1–17 9

Application Compute Time(s) I/O Volume(GB)
Turbulence1 (T1) 70 128.2
Turbulence2 (T2) 1.2 235.8
AstroPhysics (AP) 240 423.4

Table 2. HPC application characteristics for the simulation [37].

6.1.1. System deployment
We used Spark version 1.6.1 to execute Big Data applications. We configured and deployed a Spark cluster

using 33 nodes on the paravance cluster. One node consists of the Spark master, leaving 32 nodes to serve as
slaves of Spark. We allocated 8 GB per node for Spark instance and set the Spark’s default parallelism parameter
(spark.default.parallelism) to 256 which refers to the number of RDD partitions. Each Spark slave has 16 map tasks
thus Spark cluster can execute 512 map tasks in one iteration.

In our burst buffer design, we use low-latency storage devices as a storage space. To emulate this, we used Alluxio
version 1.3.1, which exposes RAMDisk of the burst buffer nodes to the compute nodes as an in-memory file system.
We configured and deployed 8 burst buffer nodes on the same cluster (paravance) as compute nodes to emulate that
burst buffer nodes are closer to compute nodes compared to the parallel file system. Each burst buffer node provides
approximately 32 GB of storage capacity.

The OrangeFS file system (a branch of PVFS2 [23]) version 2.8.3 was deployed on 6 nodes of the parasilo cluster
to serve I/O requests from both Big Data and HPC applications. We select 6 PVFS nodes using the same setting as
existing studies [12].

6.1.2. Workloads
We selected two representative Big Data workloads including Sort and Wordcount, which are parts of the Hi-

Bench [35], a Big Data benchmarking suite. Wordcount is a map-heavy workload with a light reduce phase. On the
other hand, Sort produces a large amount of intermediate data which leads to a heavy shuffling, therefore represent-
ing reduce-heavy workloads. For both workloads, we use 160GB of input data generated by RandomTextWriter of
HiBench suite. Both workloads are executed with five iterations, where each iteration processes input data size of
32GB.

For HPC workloads, we use IOR [36] which is a popular I/O benchmarking tool for HPC systems. We choose
this workload for controllable interference between Big Data and HPC to evaluate the effectiveness of Eley. For each
set of experiment, we run IOR side by side with the Big Data workloads using the same number of iterations. In each
iteration, we use IOR to emulate the I/O requests of HPC applications. Between each request, IOR processes sleep for
a given time S to emulate the computation time of HPC applications. We set S to be equal to the computation time
(Tcpu) of Big Data applications.

6.2. Simulation Setup

We design a deterministic event-driven simulator to simulate the execution of HPC and Big Data applications in
a system with the same configuration as our real deployment. We choose three write-intensive scientific applications
executed on Intrepid in 2011 [37] as the HPC workloads. Table 2 shows the characteristics of those applications.
For Big Data applications, we use the traces collected from a OpenCloud cluster in Carnegie Mellon University [18].
Table 3 presents the characteristics of the eight applications used in our simulation, which are scientific applications
that are most likely to be co-located with HPC applications in HPC systems.

We run the HPC applications for 10 iterations in the simulation. For Big Data applications, the number of iterations
(waves) depends on the total input size and the cluster capacity. We define the cluster capacity as 50GB in our
simulation. Thus we can execute 800 map tasks in one iteration. From our real system evaluation, we observe that
the bandwidth of the parallel file system is 4GB/s. Thus, we use this value in our simulation to limit the maximum
I/O bandwidth acquired by Big Data and HPC applications to the parallel file system. Based on the model defined
in Section 4, we generate I/O requests (i.e., interference factor, data copying/fetching times) by using the profiling
values obtained during our real system experiments.

9



/ Future Generation Computer Systems 00 (2018) 1–17 10

Application Compute Time(s) Input Data Size(GB)
1 20 195
2 24 860
3 12 600
4 236 355
5 29 662
6 43 799
7 41.5 1300
8 9.5 13000

Table 3. Big Data application characteristics for the simulation.

6.3. Comparisons
For both real system and simulator-based experiments, we adopt the following state-of-the-art burst buffer solu-

tions as comparisons to Eley.

• NaiveBB. As in the existing burst buffer solutions [14, 15, 16, 17], NaiveBB uses burst buffer only for storing
the intermediate data of Big Data applications. While it is already shown that this approach can improve the
performance of Big Data applications, different from Eley, it does not consider the QoS requirements of HPC
applications and the I/O latency problem in the input phase.

• Eley-NoAction. This approach performs naive prefetching to copy the input data of Big Data from parallel file
system to burst buffer nodes. Different from Eley, this approach is not aware of the QoS requirement of HPC
applications and does not use any optimization action for the prefetching.

All solutions are evaluated using the same burst buffer storage space (i.e., RAMDisk) for fair comparison. We evaluate
the completion time of both Big Data and HPC applications obtained by the three compared solutions to demonstrate
the effectiveness of Eley. For Big Data applications, we only report the completion time of the map phase which is the
main difference between Eley and the compared solutions. We also compare the resulted interference factors of both
applications after applying the three compared burst buffer solutions, which indicate the slowdown (defined as I − 1)
of the applications due to co-location and I/O contention.

7. Evaluation Results

In this section, we present the evaluation results obtained from both real system deployment and simulations.

7.1. Real System Experiments
We perform two sets of real system experiments. First, we compare Eley-NoAction with NaiveBB, the results of

which demonstrate that using burst buffer for prefetching the input data of Big Data applications can greatly improve
the performance of Big Data while reducing the interference imposed on co-located HPC applications. Second, we
compare Eley with Eley-NoAction and find that our interference-aware model and optimization actions can success-
fully guarantee the QoS requirement of HPC applications without sacrificing too much of the Big Data performance.
Each set of experiments has been executed five times and we report the average values.

7.1.1. Comparing NaiveBB with Eley-NoAction
In this experiment, we execute IOR on a cluster of 32 nodes where one process per node issues a 4GB write request

with chunk size of 1MB. Figure 3 demonstrates that prefetching reduces the map time of Sort and Wordcount by 61%
and 43%, respectively, compared to NaiveBB which reads input data from the parallel file system directly. It can be
observed that the I/O time of the IOR workloads are also reduced when using prefetching for Big Data applications, by
7% and 12% when co-locating with Sort and Wordcount, respectively. This is mainly due to the fact that prefetching
using burst buffer aggregates the I/O requests sent from a large number of Spark nodes to a small set of burst buffer

10



/ Future Generation Computer Systems 00 (2018) 1–17 11

 0

 50

 100

 150

 200

 250

 300

NaiveBB Eley-NoAction

T
im

e
 (

s
)

IOR
Map

(a) Sort

 0

 20

 40

 60

 80

 100

 120

 140

 160

NaiveBB Eley-NoAction

T
im

e
 (

s
)

IOR
Map

(b) Wordcount

Figure 3. Performance comparison between Eley-NoAction and NaiveBB.

 0

 20

 40

 60

 80

 100

 120

Eley-NoAction Eley(5%) Eley(15%) Eley(30%)

T
im

e
 (

s
)

IOR
Map
Cost

(a) Sort

 0

 20

 40

 60

 80

 100

 120

 140

Eley-NoAction Eley(5%) Eley(15%) Eley(30%)

T
im

e
 (

s
)

IOR
Map
Cost

(b) Wordcount

Figure 4. Performance comparison between Eley and Eley-NoAction.

nodes and hence reduces the interference level imposed on IOR workloads. For instance, while 32 compute nodes
request the I/O from PVFS in NaiveBB, only 8 burst buffer nodes perform prefetching with Eley-NoAction. This is
inline with the existing studies in the literature [38, 39] which demonstrate that aggregation of I/O requests help to
reduce the I/O interference. However, this small improvement might not be enough to meet the QoS requirements
of HPC applications. Therefore, we next discuss the effectiveness of our interference-aware prefetching mechanism,
Eley.

7.1.2. Comparing Eley-NoAction with Eley

Iter 1 Iter 2 Iter 3 Iter 4 Iter 5
IOR Time (s) (Eley-NoAction) 17.8 22.4 18.5 20.9 23

IOR Time (s) (Eley) 17.8 17.6 17.1 16.3 17.3
IOR Time (s) (Estimated) 17.5 17.9 17 17.9 17

Selected Action No Action Partial Delay Scale Up Partial Delay Full Delay
Cost of Sort (s) 0 13 0 9 15

Table 4. Applied actions on prefetching during one run of the Sort application and their respective cost values.

In this experiment, we execute IOR on a cluster of 8 nodes, where one process per node issues a 8 GB write
request with chunk size of 1MB. We set three different deadline requirements for IOR workloads, which are 5%, 15%
and 30% longer than the completion time of the workloads when executed individually.

11



/ Future Generation Computer Systems 00 (2018) 1–17 12

Application NaiveBB (s) Eley-NoAction (s)
1 151.7 136.6
2 771.3 526
3 379 358.6
4 2018 1925
5 674 487.3
6 979.7 770
7 1518.7 1174
8 6239 6686.7

Table 5. Average map times of Big Data applications with NaiveBB and Eley-NoAction approaches when running together with the three HPC
applications.

Figure 4 shows that Eley is aware of the QoS requirement of HPC applications and can control the level of
interference imposed by Big Data to HPC applications accordingly. We take a closer look at the optimization actions
used in each iteration to evaluate the effectiveness of Eley on guaranteeing the QoS of HPC applications. Table 4
shows the applied actions during one run of the Sort application with a QoS of 5% (i.e., 17.9 s). We can observe
that with the optimization actions, Eley is always able to guarantee the QoS requirement of HPC application with low
cost of the Big Data application. For example, in iteration 3, Eley is able to find an action (i.e., Scale Up) which
leads to zero cost for Sort application. The selection of actions depends on both the characteristics of Big Data and
HPC applications. For instance, the Scale Down action is not used during the entire execution of Sort application.
We believe this is mainly due to the relatively short computation time of Sort compared to its prefetching time (e.g.,
12 seconds and 16 seconds per iteration, respectively). Table 4 also shows the estimated IOR times by the model
we defined in Section 4 depending on the applied action. The average relative difference between the estimated IOR
times and observed IOR times with Eley is 3%. This demonstrates that our model is able to help Eley in guaranteeing
the QoS requirements of HPC applications with accurate estimations.

Another observation from Figure 4 is that there is a clear trade-off between the tightness of HPC deadline and the
performance of Big Data applications. For example, with the 5% QoS requirement, the cost of Sort and Wordcount
applications are 60% and 75%, respectively. The cost reduces to 23% and 21% for Sort and Wordcount, respectively,
when the QoS requirement is relaxed to 15%. With a small cost, the performance of the Big Data applications are
improved. The cost is also depending on several factors, such as the characteristics of HPC and Big Data applications
and the HPC platform on which the applications are executing. In the next subsection, we run a wide-range of
applications with our simulator to better study this trade-off.

7.2. Simulation Results

Similarly to the real system experiments, we perform two sets of comparisons using the three burst buffer solutions.

7.2.1. Comparing NaiveBB with Eley-NoAction
Table 5 shows the average map time of the eight Big Data applications when running together with the three

HPC applications. We can observe that Eley-NoAction can reduce the map time of Big Data applications (except
application 8) by up to 32% compared to NaiveBB. Eley-NoAction achieves performance improvement for Big Data
applications mainly by overlapping the input data reading time and map computation time. However, as application 8
has a very small computation time compared to the required prefetching time, it cannot benefit much from the Eley-
NoAction solution. The prefetching time for the application is 25 seconds while reading the input data directly from
the parallel file system is only 12 seconds. This is mainly due to the different number of nodes sending I/O requests
in naiveBB and Eley-NoAction. On the other hand, we find that the improvement on the performance of Big Data
applications brought by prefetching is small when the application has a very large computation time. For example,
the map computation time of application 4 is 236 seconds per iteration, which is 10 times larger than its prefetching
time. Thus, the performance improvement for this application when using Eley-NoAction is only 5%.

We evaluate the slowdown (Ihpc − 1) of the three HPC applications when running together with the eight Big Data
applications using NaiveBB and Eley-NoAction approaches as shown in Figure 5. We have the following observations.

12



/ Future Generation Computer Systems 00 (2018) 1–17 13

 0

 10

 20

 30

 40

 50

 60

 70

1 2 3 4 5 6 7 8

S
lo

w
d

o
w

n
 (

%
)

Big Data Application

T1
T2
AP

(a) NaiveBB

 0

 10

 20

 30

 40

 50

 60

 70

1 2 3 4 5 6 7 8

S
lo

w
d

o
w

n
 (

%
)

Big Data Application

T1
T2
AP

(b) Eley-NoAction

Figure 5. Slowdowns observed for the three HPC applications with NaiveBB and Eley-NoAction.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

1 2 3 4 5 6 7 8

S
lo

w
d

o
w

n
(%

)

Big Data Application

With T1
With T2
With AP

(a) NaiveBB

 0

 10

 20

 30

 40

 50

1 2 3 4 5 6 7 8

S
lo

w
d

o
w

n
(%

)

Big Data Application

With T1
With T2
With AP

(b) Eley-NoAction

Figure 6. Slowdowns observed for the Big Data applications with NaiveBB and Eley-NoAction.

First, when using NaiveBB, most of the HPC applications suffer a lot from the I/O interference. For example, T1
has the highest slowdown of 63% when co-locating with Big Data application 8. Second, the slowdown of the
HPC applications are greatly reduced by Eley-NoAction compared to NaiveBB. For example, the slowdown of T1 is
reduced to 26% when running with application 8 using Eley-NoAction. Third, the reduction of slowdown varies from
application to application. For example, T1 achieves the highest reduction of slowdown with 54% on average while
the reduction of slowdown for T2 and AP are both 39% on average. We also observe that application 8 is imposing
the highest slowdown to all HPC applications due to its short computation time and frequent I/O requests.

We further study the slowdown (Ibd −1) of the Big Data applications using the two burst buffer solutions as shown
in Figure 6. We have similar observations as those for HPC applications. First, the NaiveBB solution introduces high
slowdown to Big Data applications, e.g., 48% for application 3 when co-locating with T2. Second, Eley-NoAction can
greatly reduce the slowdown of Big Data applications compared to NaiveBB. For example, the reduction of slowdown
can reach up to 58% on average for application 3. Third, T2 is the HPC application which imposes the highest
slowdown to the Big Data applications. This is again due to the fact that T2 has a small computation time and thus its
I/O operations can interfere frequently with the I/O operations of Big Data applications.

Iter 1 Iter 2 Iter 3 Iter 4 Iter 5
T2 I/O Time (s) (Eley-NoAction) 70 65 68 65 69

T2 I/O Time (s) (Eley) 59 59 62 59 59
Selected Action Scale Down Full Delay Partial Delay Scale Down Scale Down

Cost of Application 6 (s) 6 0 0 6 6

Table 6. Applied actions on prefetching during the first 5 iterations of the application 6 and T2 and their respective cost values.

13



/ Future Generation Computer Systems 00 (2018) 1–17 14

 0

 5

 10

 15

 20

 25

1 2 3 4 5 6 7 8

C
o

s
t 

(s
)

Big Data Application

5%
15%
30%

(a) Average cost for the Big Data applications

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

T1 T2 AP

N
o
rm

a
liz

e
d
 T

im
e
 (

%
)

HPC Application

5%
15%
30%

(b) Normalized I/O time of HPC applications respect
to QoS

Figure 7. Performance of Big Data and HPC applications with Eley approach.

7.2.2. Comparing Eley-NoAction with Eley
We study the effectiveness of Eley on satisfying the QoS requirements of different HPC applications with different

concurrently running Big Data applications. We set three QoS requirements for HPC applications, which are 5%,
15% and 30% longer than the completion time of the applications when executed individually. Figure 7(a) shows the
average cost of the Big Data applications and Figure 7(b) shows the average performance of the HPC applications
normalized to the different QoS requirements when optimized with Eley.

Figure 7(a) shows that the cost of Big Data applications decreases with more relaxed QoS requirements. For Big
Data applications with longer prefetching time than computation time, the initial cost before applying any action is
high. For example, application 3 and 8 have the highest cost values due to their relatively short computation times.
Figure 7(b) demonstrates that Eley is able to satisfy the QoS requirement for the three HPC applications under all
settings. This shows that our interference-aware mechanism is effective in guaranteeing the QoS for HPC applications.
Take the execution of Big Data application 6 with T2 application for example. Table 6 shows the optimization actions
selected when the QoS requirement of T2 is set to 5% (i.e., 62 seconds). For all the iterations, Eley is able to satisfy
the QoS requirement of T2. In two of the iterations, we are able to find actions leading to zero cost of the Big Data
application. Different from the real system experiment, we find that the Scale Down action is selected at the last two
iterations. This is mainly because application 6 has almost twice longer computation time compared to its prefetching
time (recall that Sort has shorter computation time than its prefetching time and thus never uses Scale Down).

7.2.3. Trade-off between QoS of HPC and Performance of Big Data
To further investigate the trade-off between QoS requirements of HPC applications and the performance of Big

Data applications, we compared Eley with NaiveBB under three different QoS requirements: 5%, 15% and 30%.
Figure 8(a) shows again that NaiveBB degrades the performance of all the three HPC applications due to the I/O inter-
ference. On the other hand, Eley is able to control this performance degradation depending on the QoS requirements
of the HPC applications.

When we look at the performance of Big Data applications in Figure 8(b), we observe that Eley can improve the
performance of most of these applications even with 5% QoS requirements for HPC applications. We can also see that
this performance improvement brought by Eley depends on the characteristics of Big Data applications. For instance,
when the application has a very small computation time (for the applications 3 and 8), Eley would not be able to fully
hide the cost of the taken optimal prefetching action for guarenteeing the QoS of HPC applications.

Figure 8(b) also shows that we can get better performance improvements with Eley compared to NaiveBB with a bit
relaxed QoS requirements for HPC applications. For example, the reduction in the map time of application 2 increases
from 19% to 30% when the QoS requirement is relaxed from 5% to 15%. On the other hand, for some applications
(e.g., application 4,6 and 7) we do not observe this trade-off. This is mainly due to their relatively larger computation
times which give Eley more flexibility – even with tighter QoS requirements – in terms of finding optimal prefetching
decisions without hurting the performance of these applications. Similar to the observation found in Figure 7(a), Eley
does not show much benefit compared to NaiveBB for application 3 and 8 due to their short computation times.

14



/ Future Generation Computer Systems 00 (2018) 1–17 15

 0

 5

 10

 15

 20

 25

T1 T2 AP

S
lo

w
d

o
w

n
 (

%
)

HPC Application

NaiveBB
Eley(5%)

Eley(15)%
Eley(30%)

(a) Average slowdowns observed for HPC applica-
tions with NaiveBB and Eley.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

1 2 3 4 5 6 7 8

N
o

rm
a

liz
e

d
 T

im
e

(%
)

Big Data Application

Eley(5%)
Eley(15)%

Eley(30%)

(b) Average map times of Big Data applications with
Eley under different QoS requirements. Map times are
normalized with respect to the NaiveBB.

Figure 8. Performance comparison of Big Data and HPC applications with NaiveBB and Eley approaches.

8. Conclusion

Big Data analytics frameworks (e.g., Hadoop and Spark) have been increasingly used by many companies and
research labs to facilitate large-scale data analysis. However, with the growing needs of users and size of data,
commodity-based infrastructure (mostly commonly-used for now) will strain under the heavy weight of Big Data.
On the other hand, HPC systems offer a rich set of opportunities for Big Data processing. As first steps toward Big
Data processing on HPC systems, several research efforts have been devoted to deploy burst buffer solutions in HPC
systems to address the performance challenges of Big Data applications. However, most of those efforts focus on only
using burst buffer for intermediate data of Big Data applications, which still suffer from the high I/O latency between
compute nodes and parallel file system for Big Data applications with huge input data sizes.

In this paper, we propose Eley, a burst buffer solution which takes into consideration both the input data and
intermediate data of Big Data applications in HPC systems. Our goal is to accelerate the performance of Big Data
applications while guaranteeing the QoS of HPC applications. To achieve this goal, Eley is composed of a prefetcher,
which prefetches the input data of Big Data applications before the execution of each iteration. By prefetching, we
are able to overlap the I/O and computation time to improve the performance of Big Data applications. However,
data prefetching may introduce huge I/O interference to the HPC applications and thus end up with a degraded and
unpredictable performance for HPC applications. To this end, we design Eley to be interference-aware. Specifically,
we equip the prefetcher with five optimization actions and propose an interference-aware decision maker to iteratively
choose the best action to optimize the prefetching while guaranteeing the pre-defined QoS requirement of HPC ap-
plications. We evaluate the effectiveness of Eley with both real system experiments and simulations. With 5% QoS
requirement of the HPC application, Eley reduces the execution time of Big Data applications by up to 30% compared
to the Naive burst buffer solution (denoted as NaiveBB) [14, 15, 16, 17] while guaranteeing the QoS requirement. On
the other hand, the NaiveBB violates the QoS requirement by up to 58%.

As future work, we are going to develop a burst buffer system which can alleviate the latency problem in all
I/O phases. To this end, we plan to use burst buffer for the output phase and adopt interference-aware strategies to
synchronize the output data to the parallel file system. An interesting direction to explore is how different traffic
and arrival patterns – described in [40] – may impact the performance of HPC applications. Moreover, we plan to
investigate the feasability of employing Eley to improve the performance of Big Data applications under failures [41].

Acknowledgment

This work is supported by the ANR KerStream project (ANR-16-CE25-0014-01), the Shenzhen Science and Tech-
nology Foundation (Grant No.JCYJ20150529164656096, JCYJ20170302153955969), Shenzhen University Startup
Grant (No.2018062) and Guangdong Pre-national Project (2014GKXM054). The experiments presented in this paper
were carried out using the Grid’5000/ALADDIN-G5K experimental testbed, an initiative from the French Ministry of

15



/ Future Generation Computer Systems 00 (2018) 1–17 16

Research through the ACI GRID incentive action, INRIA, CNRS and RENATER and other contributing partners (see
http://www.grid5000.fr/ for details).

References

[1] J. Dean and S. Ghemawat, “MapReduce: simplified data processing on large clusters,” Communications of the ACM, vol. 51, no. 1, pp.
107–113, 2008.

[2] H. Jin, S. Ibrahim, L. Qi, H. Cao, S. Wu, and X. Shi, “The MapReduce Programming Model and Implementations,” Cloud Computing:
Principles and Paradigms., pp. 373–390, 2011.

[3] “CMU OpenCloud Hadoop Cluster,” http://ftp.pdl.cmu.edu/pub/datasets/hla/dataset.html, Accessed on Feb 2017.
[4] NICS, “Kraken Cray XT5 system, http://www.nics.tennessee.edu/computing-resources/kraken.”
[5] NCSA, “BlueWaters project, http://www.ncsa.illinois.edu/BlueWaters/.”
[6] “Big Data and Extreme-scale Computing (BDEC) Workshop, http://www.exascale.org/bdec/.”
[7] G. Fox, J. Qiu, S. Jha, S. Ekanayake, and S. Kamburugamuve, “Big data, simulations and hpc convergence,” Technical Report· January 2016,

DOI: 10.13140/RG. 2.1, Tech. Rep., 2016.
[8] Y. Guo, W. Bland, P. Balaji, and X. Zhou, “Fault tolerant mapreduce-mpi for hpc clusters,” in Proceedings of the International Conference

for High Performance Computing, Networking, Storage and Analysis. ACM, 2015, p. 34.
[9] S. Venkataraman, A. Panda, G. Ananthanarayanan, M. J. Franklin, and I. Stoica, “The power of choice in data-aware cluster scheduling,” in

Proceedings of the 11th USENIX conference on Operating Systems Design and Implementation. USENIX Association, 2014, pp. 301–316.
[10] G. Ananthanarayanan, S. Agarwal, S. Kandula, A. Greenberg, I. Stoica, D. Harlan, and E. Harris, “Scarlett: coping with skewed content

popularity in mapreduce clusters,” in Proceedings of the sixth conference on Computer systems. ACM, 2011, pp. 287–300.
[11] S. Ibrahim, H. Jin, L. Lu, B. He, G. Antoniu, and S. Wu, “Maestro: Replica-aware map scheduling for mapreduce,” in Cluster, Cloud and

Grid Computing (CCGrid), 2012 12th IEEE/ACM International Symposium on. IEEE, 2012, pp. 435–442.
[12] O. Yildiz, M. Dorier, S. Ibrahim, R. Ross, and G. Antoniu, “On the root causes of cross-application i/o interference in hpc storage systems,”

in IPDPS-International Parallel and Distributed Processing Symposium, 2016.
[13] M. Dorier, G. Antoniu, R. Ross, D. Kimpe, and S. Ibrahim, “CALCioM: Mitigating I/O interference in HPC systems through

cross-application coordination,” in Proceedings of the IEEE International Parallel and Distributed Processing Symposium (IPDPS ’14),
Phoenix, AZ, USA, May 2014. [Online]. Available: http://hal.inria.fr/hal-00916091

[14] N. S. Islam, M. Wasi-ur Rahman, X. Lu, and D. K. Panda, “High performance design for hdfs with byte-addressability of nvm and rdma,” in
Proceedings of the 2016 International Conference on Supercomputing. ACM, 2016, p. 8.

[15] N. Chaimov, A. Malony, S. Canon, C. Iancu, K. Z. Ibrahim, and J. Srinivasan, “Scaling spark on hpc systems,” in Proceedings of the 25th
ACM International Symposium on High-Performance Parallel and Distributed Computing. ACM, 2016, pp. 97–110.

[16] K. Sato, K. Mohror, A. Moody, T. Gamblin, B. R. de Supinski, N. Maruyama, and S. Matsuoka, “A user-level infiniband-based file system
and checkpoint strategy for burst buffers,” in Cluster, Cloud and Grid Computing (CCGrid), 2014 14th IEEE/ACM International Symposium
on. IEEE, 2014, pp. 21–30.

[17] Y. Wang, R. Goldstone, W. Yu, and T. Wang, “Characterization and optimization of memory-resident mapreduce on hpc systems,” in Parallel
and Distributed Processing Symposium, 2014 IEEE 28th International. IEEE, 2014, pp. 799–808.

[18] “Hadoop Workload Analysis,” http://www.pdl.cmu.edu/HLA/index.shtml, Accessed on Jan 2017.
[19] “The Apache Hadoop Project,” http://www.hadoop.org.
[20] W. Tantisiriroj, S. W. Son, S. Patil, S. J. Lang, G. Gibson, and R. B. Ross, “On the duality of data-intensive file system design: reconciling hdfs

and pvfs,” in Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis. ACM,
2011, p. 67.

[21] “Using Lustre with Apache Hadoop,” http://wiki.lustre.org/index.php/Running_Hadoop_with_Lustre, Accessed on Feb 2017.
[22] P. Xuan, J. Denton, P. K. Srimani, R. Ge, and F. Luo, “Big data analytics on traditional hpc infrastructure using two-level storage,” in

Proceedings of the 2015 International Workshop on Data-Intensive Scalable Computing Systems. ACM, 2015, p. 4.
[23] P. H. Carns, W. B. Ligon, III, R. B. Ross, and R. Thakur, “PVFS: a Parallel File System for Linux Clusters,” in Proceedings of the 4th annual

Linux Showcase & Conference - Volume 4. Berkeley, CA, USA: USENIX Association, 2000.
[24] “HDFS. The Hadoop Distributed File System,” http://hadoop.apache.org/common/docs/r0.20.1/hdfs_design.html.
[25] Z. Fadika, E. Dede, M. Govindaraju, and L. Ramakrishnan, “Mariane: Mapreduce implementation adapted for hpc environments,” in Pro-

ceedings of the 2011 IEEE/ACM 12th International Conference on Grid Computing. IEEE Computer Society, 2011, pp. 82–89.
[26] I. El-Helw, R. Hofman, and H. E. Bal, “Scaling mapreduce vertically and horizontally,” in High Performance Computing, Networking, Storage

and Analysis, SC14: International Conference for. IEEE, 2014, pp. 525–535.
[27] N. S. Islam, D. Shankar, X. Lu, M. Wasi-Ur-Rahman, and D. K. Panda, “Accelerating i/o performance of big data analytics on hpc clusters

through rdma-based key-value store,” in Parallel Processing (ICPP), 2015 44th International Conference on. IEEE, 2015, pp. 280–289.
[28] Z. Zhou, X. Yang, D. Zhao, P. Rich, W. Tang, J. Wang, and Z. Lan, “I/O-Aware Batch Scheduling for Petascale Computing Systems,” in IEEE

International Conference on Cluster Computing, 2015.
[29] A. Gainaru, G. Aupy, A. Benoit, F. Cappello, Y. Robert, and M. Snir, “Scheduling the I/O of HPC Applications Under Congestion,” in IEEE

International Parallel and Distributed Processing Symposium (IPDPS), May 2015, pp. 1013–1022.
[30] F. Zanon Boito, R. Kassick, P. O. A. Navaux, and Y. Denneulin, “AGIOS: Application-Guided I/O Scheduling for Parallel File Systems,” in

Parallel and Distributed Systems (ICPADS), 2013 International Conference on. IEEE, 2013, pp. 43–50.
[31] A. Kougkas, M. Dorier, R. Latham, R. Ross, and X.-H. Sun, “Leveraging burst buffer coordination to prevent i/o interference.”
[32] P. Carns, R. Latham, R. Ross, K. Iskra, S. Lang, and K. Riley, “24/7 characterization of petascale i/o workloads,” in Cluster Computing and

Workshops, 2009. CLUSTER’09. IEEE International Conference on. IEEE, 2009, pp. 1–10.

16



/ Future Generation Computer Systems 00 (2018) 1–17 17

[33] M. Dorier, S. Ibrahim, G. Antoniu, and R. Ross, “Omnisc’io: a grammar-based approach to spatial and temporal i/o patterns prediction,” in
Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. IEEE Press, 2014, pp.
623–634.

[34] INRIA, “Grid’5000: http://www.grid5000.fr.”
[35] “HiBench Big Data microbenchmark suite, https://github.com/intel-hadoop/HiBench.”
[36] H. Shan and J. Shalf, “Using IOR to Analyze the I/O Performance for HPC Platforms,” in Cray User Group Conference 2007, Seattle, WA,

USA, 2007.
[37] N. Liu, J. Cope, P. Carns, C. Carothers, R. Ross, G. Grider, A. Crume, and C. Maltzahn, “On the role of burst buffers in leadership-class

storage systems,” in 012 IEEE 28th Symposium on Mass Storage Systems and Technologies (MSST). IEEE, 2012, pp. 1–11.
[38] M. Dorier, G. Antoniu, F. Cappello, M. Snir, R. Sisneros, O. Yildiz, S. Ibrahim, T. Peterka, and L. Orf, “Damaris: Addressing performance

variability in data management for post-petascale simulations,” ACM Transactions on Parallel Computing (TOPC), vol. 3, no. 3, p. 15, 2016.
[39] H. Abbasi, M. Wolf, G. Eisenhauer, S. Klasky, K. Schwan, and F. Zheng, “DataStager: Scalable Data Staging Services for Petascale

Applications,” in Proceedings of the 18th ACM international symposium on High performance distributed computing, ser. HPDC ’09. New
York, NY, USA: ACM, 2009, pp. 39–48. [Online]. Available: http://doi.acm.org/10.1145/1551609.1551618

[40] W. Miao, G. Min, Y. Wu, H. Wang, and J. Hu, “Performance modelling and analysis of software-defined networking under bursty
multimedia traffic,” ACM Trans. Multimedia Comput. Commun. Appl., vol. 12, no. 5s, pp. 77:1–77:19, Sep. 2016. [Online]. Available:
http://doi.acm.org/10.1145/2983637

[41] O. Yildiz, S. Ibrahim, and G. Antoniu, “Enabling fast failure recovery in shared hadoop clusters: Towards failure-aware scheduling,”
Future Generation Computer Systems, vol. 74, pp. 208 – 219, 2017. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0167739X16300280

17



Bio

Orc
Turk
Tech
Atla
perf

 

 

 

 

 

 

 

 

 

 

 

ographies 

cun Yildiz r
key and h
hnology, S
antique Res
formance co

 

received his
is M.Sc. d
weden. He

search Cent
omputing an

s B.Sc. degr
degree in 
e is current
tre. His res

nd big data m

ree in Comp
Distributed 
tly a Ph.D
search inter
management

 

puter Scienc
Computin

D. student i
rests includ
t. 

ce from Bog
ng from Ro
in INRIA, 
de distribute

gazici Univ
oyal Institu
Rennes-Bre

ed systems

versity, 
ute of 
etagne 
, high 





 

 

 

 

 

Amelie Chi Zhou received her PhD degree in 2016 from School of Computer 
Engineering, Nanyang Technological University, Singapore. She received her Master's 
degree in 2011 and Bachelor's degree in 2009 both from Beihang University, China. She 
is currently a postdoc fellow in Inria-Rennes, France. Her research interests lie in cloud 
computing, big data processing, distributed systems and resource management. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Sha
rese
of S
mem
(IEE
2017
chai
com
and 
jour
ACM
curr
Proj
http

 

 

 

di Ibrahim
arch center

Science and 
mber for inte
EE ICPP, IE
7, PhD con
ir for the 2

mputing, Big
file and s

rnals (such 
M/IEEE Su
rently leadin
ect Lab a
://people.ren

m is an Inria 
. He obtain
Technology

ernational c
EEE Cluste

nsortium co-
2014 ScalC
g data mana
storage syst

as ACM 
uperComput
ng the ANR
and JLESC
nnes.inria.fr

Research S
ned his Ph.D
y (HUST) i
conferences 
er, ACM/IEE
-chair for th

Com confere
agement, Da
tems. His 
ToPC, IEE
ting, IEEE 

R KerStream
C: Joint La
r/Shadi.Ibra

 

Scientist (CR
D. in Compu
in Wuhan o
in cloud, H
EE CCGrid
he 2014 Clo
ence. His c
ata-Intensiv
papers are 

EE TPDS a
IPDPS, IE

m project an
aboratory o

ahim/ 

R1) at Inria 
uter Science
f China in 2

HPC and par
d), and as P
oudCom con
current rese

ve computin
published 

and FGCS)
EEE ICDC
nd is a mem
on Extrem

 Rennes Br
e from Hua
2011. He ha
rallel and di
Program co-
nference an
earch intere
ng, virtualiz

in prestigi
) and proce

CS and IEE
mber the DI

me-Scale Co

etagne Atla
azhong Univ
as served as
istributed sy
-chair of IC

nd Worksho
ests are in 
zation techn
ious interna
eedings (su

EE ICPP). 
ISCOVERY
omputing. 

antique 
versity 
s a PC 
ystems 
CA3PP 
ops co-

cloud 
nology, 
ational 
uch as 
He is 

Y Inria 
More: 


