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Improving Update-Intensive Workloads
on Flash Disks through Exploiting
Multi-Chip Parallelism
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Abstract—Solid state drives (SSDs), or flash disks have been considered as ideal storage for various data-intensive workloads,
because of the low random access latency and the intra-disk multi-chip parallelism. However, due to inherent nature of flash memories,
update-intensive workloads cause the flash disk fragmented, and trigger costly internal activities such as cleaning and wear leveling.
We use database transaction processing as a motivating update-intensive workload. Our studies based on a flash disk simulator as
well as flash disks show that, these activities result in significant overhead to the I/O response time and system throughput. To resolve
the impact of internal activities, we propose dynamic page replications to exploit the multi-chip parallelism on the flash disk. Specifically,
we replicate the frequently blocked data pages to improve the data availability even when internal activities block the request. To
reduce the overhead of replications, we take advantage of the idle periods in the flash chips for the I/O operations by writes to replicas
or reads from replicas, and further develop a prediction model for the decisions on those 1/O operations to minimize the interference to
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normal I/O operations. We evaluate our techniques with three public transaction benchmarks in the simulator as well as on the real
flash disks. Our results demonstrate the effectiveness of our replication management on improving I/O response time and system

throughput.

Index Terms—Multi-chip parallelism, flash disks, solid state drives, update-intensive workloads, transaction processing, replication

1 INTRODUCTION

LASH memory has dominated the storage for mobile

devices and sensors for its advantages of light weight,
power saving and shock resistance. Due to the increasing
capacity and dropping price, flash-based solid state drives
(SSDs, or flash disks) have emerged as a popular storage for
enterprise applications. Recently, efficient data structures
and algorithms optimized for flash disks have become a
fruitful research field [14], [20], [23], [25], [30], [31], [32],
[46], [48]. Those studies have demonstrated that flash disks
are ideal storage for various workloads, due to low random
access latency and high intra-disk multi-chip parallelism
[1]. Main-stream flash disks offer less than 0.1 ms access
latency, and each flash disk consists of multiple flash chips
(or channels) for serving I/O requests in parallel. However,
due to the inherent erase-before-write nature of flash mem-
ory, I/O writes, especially the small random writes, make
flash disks fragmented. That results in costly internal activi-
ties such as cleaning (or garbage collection) and wear level-
ing [1], [9], [11], [41]. In this paper, we target at addressing
the performance issues from fragmentation of running
update-intensive workloads on flash disks.
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Upon serving an I/O write, the flash disk needs to find
a clean page for the write request. As a flash disk becomes
fragmented, the number of clean pages diminishes. When
a clean page is not available, due to the erase-before-write
mechanism, a page write requires erasing a large block,
called the erase block. An erase block usually consists of
dozens of flash pages. For an I/O write request of @
pages, the worst case is that these pages are mapped to Q
distinct erase blocks, which can result in @) block cleaning
operations for the request. In addition to cleaning, wear
leveling could move blocks around such that writes are
uniformly distributed to blocks [1]. These internal activi-
ties are due to the inherent nature of the flash storage
media, and they are doomed to occur as the flash disk
becomes fragmented.

Previous studies [9], [11], [41] have observed the signifi-
cant overhead caused by internal activities on flash disks.
Chen et al. [9] showed that a fragmented flash disk suffers
from ten times slower random writes. Shimpi [41] also
showed the severe performance degradation on several
commodity SSDs. Chen [11] viewed internal activities as
outliers in transaction logging, causing ad-hoc high latency.
These studies have demonstrated the significant perfor-
mance problems of internal activities on specific flash disks.
However, there has been little work [11], [47] on resolving
the impact of internal activities. Chen [11] proposed sched-
uling synchronous logging to multiple flash memory drives
to improve the logging throughput. Yoo et al. [47] proposed
buffer management algorithms considering the number of
block erasure operations. While those studies can reduce
some occurrences of internal activities, they cannot reduce
the overhead when internal activities do happen.
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We use database transaction processing as our motivat-
ing example for a detailed study on the impact of internal
activities. We adopt two complementary approaches, i.e.,
with a public simulator [27] and on real flash disks. The
simulator has been used in previous studies [1], [36]. Since
the details on flash translation layer (FTL) [18] and internal
activities are mostly private properties of hardware ven-
dors, the simulator allows us to understand how the inter-
nal activities affect the performance under different FTL
configurations. On both simulated and real flash disks, we
have observed that internal activities are an important per-
formance factor when the flash disk is fragmented. The
simulations show that fragmentation results in 71 percent
throughput degradation, and increases the average
response time by 100 percent.

Different from traditional hard disks, flash disks embrace
different degrees of parallelism within the disk. For example,
flash chips within a flash disk are able to serve I/O requests
independently. Even within a flash chip, some degree of par-
allelism, e.g., interleaving, is offered. Therefore, we propose
replication to exploit the multi-chip parallelism within the
flash disk. The core idea is to replicate the pages with the
most performance gain across the chips. When an 1/0
request is blocked by any internal activity, it can be served
by other available chips. Given a space budget, we develop a
novel replication manager to dynamically determine the set
of pages to replicate so that the performance gain is maxi-
mized. The replication manager considers workload locality
and blocking probabilities of different pages. Replications
induce extra I/O operations. To reduce their interferences to
normal I/O operations, we take advantage of the idle periods
in the flash chips for the I/O operations by writes to replicas
or reads from replicas. We further develop a prediction
model for the decisions on those I/O operations to minimize
the interference to normal I/O operations.

We conduct the experiments with simulations and real
flash disks. The simulation shows that our replication tech-
nique reduces the average response time for transaction
processing by 59 percent. The experiments on real flash
disks show that replication improves the performance of
the three benchmarks with a reduction on the average
response time by 22 percent, and reduces the response time
of the 1 percent worst transactions by 39 percent.

Organization. The rest of the paper is organized as fol-
lows. Section 2 introduces the preliminaries and reviews
the related work. Section 3 gives the motivation and an
overview of our approach. We present the design and
implementation of the replication manager in Section 4,
followed by the evaluation in Section 5. Finally, we con-
clude in Section 6.

2 PRELIMINARY AND RELATED WORK

2.1 Flash Disks

Flash disks with different hardware and software designs
can vary significantly on the storage capacity and I/O perfor-
mance [7]. In this paper, we focus on more recent flash disks,
each consisting of a set of flash chips that are connected to a
controller. Compared with magnetic hard disks, flash disks
differ in the following three unique features. First, flash page
updates are copy-on-write, and pages must be erased before

being overwritten. Second, flash disks have high in-disk par-
allelism: the chips can serve I/O requests in parallel. While a
single chip has relatively low bandwidth, the aggregated
bandwidth from parallel chips can be high. Parallelism of
different storage elements such as channels, packages, dies
and planes is available on flash disks [8]. This paper focuses
on chip-level parallelism. Due to the chip-level parallelism,
the flash disk can serve I/O requests while performing inter-
nal activities. Third, a software layer FTL is used to maintain
the address mapping, and to perform various internal activi-
ties including erasures, cleaning and wear leveling. This
paper focuses on reducing the runtime overhead of internal
activities on update-intensive workloads.

We briefly introduce two kinds of internal activities
including cleaning and wear leveling. More details on inter-
nal activities can be found in previous studies [1], [7], [9].

Cleaning. Due to the erase-before-write nature, a
page write generates an out-dated page, and may trigger gar-
bage collection when a clean page is not available. Upon gar-
bage collection, it reclaims the outdated pages in the
candidate block for reuse. Before cleaning, it reads all the
valid pages, and writes them back to the block after erasure.

Wear-leveling. A number of wear-leveling algorithms [1],
[4] have been proposed to shuffle around the blocks for
making the writes evenly performed.

SATA is a typical interface for connecting SSDs to com-
puting systems. SATA III can offer more support for out-
standing I/Os and queued TRIM commands for improved
performance. We give more details in Appendix A of the
supplementary file, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TPDS.2014.2308199.

2.2 Flash-Aware System Design

There have recently been a lot of research efforts on flash-
based data structures and algorithms from a single machine
(e.g., [23], [25], [26], [48]) to distributed systems [15] and
supercomputers [40]. We briefly describe the relevant
related work on flash-aware system design, and more
details can be found in a recent tutorial [6].

Lee and Moon [23] proposed an in-page logging strat-
egy to reduce the number of writes. They further per-
formed extensive experiments on a commercial DBMS
[24], which show that flash disks can improve the overall
performance of transaction processing. Flash-optimized
data structures are developed to improve indexing perfor-
mance [14], [25], [26], [48]. Due to asymmetry of reads
and writes on flash disks, different write-optimized poli-
cies are developed, e.g., delayed writes [31], [32], [35], par-
tial writes [38], write clustering [34] and repairing [43].
These techniques can reduce the number of occurrences of
internal activities. Our approach is complementary to
these write-optimized techniques, and focuses on improv-
ing the performance with dynamic replications and taking
advantage of multi-chip parallelism. Similar to our study,
Roh et al. [37] proposed a flash-aware B+-tree structure
with optimizations on multi-chip parallelism. They have
not considered replications. RAIDs have been adapted to
multiple flash disks in order to improve the reliability [2],
[17]. We currently investigate our replication management
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Fig. 1. The replication manager is implemented as a component in FTL
handling I/O operations from upper-level applications.

within a single flash disk, and the extensions to multiple
flash disks are straightforward by treating different flash
disks as another level of parallelism.

There have been other studies leveraging the internal
management routines of SSDs. We review those studies in
two major categories. The first category is on how to
exploit the internal chip parallelism for optimizing the
performance of specific applications/operations. Exam-
ples are B+tree [37], scan and join [21] and other database
operations [10]. Hu et al. [16] studied the impact of differ-
ent levels of parallelism on the endurance. The second
category is on how to make other system components
aware of internal activities like erase operations. Yoo
et al. [47] developed the page replacement algorithm with
the goal of reducing the number of erase operations and
improving the wear-leveling degree of flash memory. Lee
et al. [22] proposed buffer-aware garbage collection algo-
rithms for reducing unnecessary page migrations. Jeon
et al. [19] explored how FTL designs can be adapted to
MapReduce workloads. In contrast, this paper develops
the replication-based mechanism to dynamically exploit
the internal parallelism, with little modification on the
application.

3 OVERVIEW

We have conducted some benchmark studies on real
flash disks and simulations. Our motivation studies have
shown that: 1) the overhead of internal activities is sig-
nificant for update-intensive workloads. 2) the intra-disk
multi-chip parallelism enables optimization opportunities
for accessing other chips while a chip is blocked by
internal activities. More details about those studies can
be found in Appendix B of the supplementary file, avail-
able online.

The goal of this paper is to improve the performance of
update-intensive workloads on the flash disk through
reducing the overhead of the internal activities. Ideally, we
have two directions for this goal, one is to reduce the fre-
quency of internal activities, and the other is to reduce the
overhead when internal activities occur. In this study, we
address the latter case with replications. Given a budget of
disk space, we aim at maximizing the performance gain
with dynamic replication management.

The dynamic replication management is performed by a
replication manager, which exploits the inherent intra-disk
parallelism. Fig. 1 shows the architectural overview of the
replication manager for handling the I/O operations. The
replication manager is designed as a system component in
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TABLE 1
Notations Throughout the Paper
Parameter | Description
B Page size (KB)
1 The number of chips in the flash disk
E Erase block size (in number of pages)
Cg The cost of erasing a block
CRr, Cyw | The cost of reading and writing a page (without

cleaning), respectively

The maximum number of replicas in a replication
group

D The threshold value for detecting an internal activity
(by default, D = 2Cy)

FTL. When receiving I/O reads and writes from the upper-
level application, it issues the actual I/O reads and writes
to flash chips, according to the I/O handling algorithms
(Section 4.1). If a request is blocked by an internal activity,
the request may be redirected to the other flash chips for
reading or writing a replica. As for replication, the replica-
tion manager identifies the set of pages to replicate in order
to exploit the intra-disk parallelism.

To fully utilize the memory bandwidth, we propose to
leverage the idle period to perform the extra accesses by
the replication manager. This is also to reduce the interfer-
ence to the normal I/O operations. The extra operations
include the writes caused by replications and the reads to
the replica. Those extra operations may pose interference
to normal I/O operations. Ideally, we should identify the
lengthy idle periods that can accommodate the extra oper-
ations. However, it is impossible or impractical to predict
the length of the next idle period without a priori knowl-
edge. Thus, we periodically estimate the idle period distri-
bution and determine threshold values for individual flash
chips according to the distribution. Only if the current idle
period exceeds the threshold, we perform an extra opera-
tion. The details of deciding extra accesses are presented
in Section 4.2.2.

4 REPLICATION MANAGER

Replication is widely used to increase the data availability
in computer systems [3], [42]. We design and implement
the replication manager to improve the data availability
when internal activities occur. It basically has two func-
tionalities. First, it receives the I/O requests from upper-
level applications (such as databases), handles them and
returns the data. Second, it determines the set of pages to
be replicated and when to perform extra accesses. Given
a budget of disk space (i.e., replication space), the replica-
tion manager needs to perform replacement when the
budget is reached.

In the remainder of this section, we first describe 1/0O
handling algorithms provided by our replication manager.
Next, we present the details on replication management,
including the policies for selecting pages to replicate and
deciding when to perform extra accesses. Table 1 shows the
notations used throughout the paper.

4.1 1/0 Handling with Replication
We define a replica group of a page to be the set of replicas
for the page. In our replication design, each page can have
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Fig. 2. An example of replication manager with RWrite. RAM denotes the on-disk buffer.

up to K replicas, where K denotes the maximum number of
replicas per page. Ideally, to achieve data availability, we
should replicate the page to different storage elements
within a flash disk. Thus, K is no larger than the number of
parallel storage elements in the flash disk.

The replication manager has two algorithms namely
RRead and RWrite to handle the I/O operations from the
upper level applications. Particularly, RRead reads a page
from a replica group, and RWrite writes a page and forms a
replica group if necessary. Procedures RRead and RWrite are
shown in Algorithms 1 and 2, respectively. The read and
write operations used in those two procedures are imple-
mented with non-blocking I/O operations.

Algorithm 1 RRead: handing a page read from a replica group

Description: read a page p from
g.

its replica group
: while p = null do
let r be the next unissued replica in g;
if = null then
wait;
else
read a page p from r;
add reading 7 into the pending request list, L;
if 31 € L is done within time D then

1
2
3
4:
5:
6
7
8
9 let p be I’s result;

Algorithm 2 RWrite: handling a page write
Description: write a page p, and form a new replica group

g.
1: iodone = false;
2: g = null;

3: while todone # true do

4: if the number of replicas in g reaches K then

5: wait;

6:  else

7: write the page p to the page pid;

8: add writing p into the pending request list, L;

9: add pid into g;

10:  if 3] € L is done within time D then

11: iodone = true;

12: else

13: pick a random partition and write to a page, and let it be pid;

These two algorithms are designed with similar ideas,
considering both replication and the occurrence of internal
activities. Let us illustrate the RRead interface in more
details. The occurrence of internal activities can be identi-
fied through the chip status of FTL [1], [18]. The RRead inter-
face submits the I/O request to the replicas one by one. If
the requests are blocked by internal activities, we issue a
request to another unissued replica in the replica group.
When selecting an unissued replica, the one with the lowest
blocking probability is preferred. We estimate this blocking
probability based on the history access statistics. In

particular, we define blocking probability to be the ratio of
accesses being blocked, i.e., #fT‘:;Z(l‘d, where # Blocked and
#Total are the number of accesses that are blocked by inter-
nal activities and the total number of accesses to the page,
respectively. If two chips have very similar blocking proba-
bilities (e.g., the difference is smaller than 0.05), we choose
the one with lower bandwidth unitization (i.e., with more
idle cycles). If such a replica is not available, we need to
wait until one of the requests returns. This is the worst case
for the response time of RRead. To reduce the response time,
the result of the earliest finished read is returned, and the
results of other unfinished reads are discarded later.

In our implementation of RRead and RWrite, we need
data structures for recording the pages in a replica group
as well as whether a page in the replication space is valid
or not. In particular, we maintain two map structures in
the internal RAM of SSD: replication map and valid map.
The replication map maintains the mapping from the
physical page ID to its replica group. The valid map is a
bitmap indicating whether a page in the replication space
is valid or not (zero for an invalid page and one for a
valid page). When receiving an I/O request from the
upper-level application, the replication manager checks
the replication map for the replica group, and uses the
valid map to manage the replication space. An example
illustrating those two map structures is shown in Fig. 2.
Initially, all replica groups have one page only, and all
bits in the valid map are zero (Fig. 2a). Next, an RWrite
operation is performed on P1 and an internal activity
occurs. As shown in Fig. 2b, a page R1 is replicated in the
replication space, and the valid bit of R1 is set to be one.
Next, another RWrite operation is performed on P1 and
no internal activities occur. There is no page replicated
and the valid bit of R1 is set to be zero, indicating R1 can
be reclaimed (Fig. 2¢).

There are some design issues worth noting for RWrite.
First, RWrite adopts the primary replication protocol [42].
The firstly written page is the primary copy, and others
are secondary copies. The second issue is about the data
consistency among replicas. When we update a replicated
page, we generate its replicas according to RWrite,
instead of performing in-place updates on other replicas.
This is because of the erase-before-write hardware feature
of the flash disk. The in-place update is equivalent to re-
write on the flash disk. Therefore, when a page is
updated, we mark all its replicas invalid, and create new
replicas in RWrite if necessary. The replicas are always
consistent after RWrite. Third, similar to RRead, the earli-
est finished write operation makes RWrite return to
upper-level applications. This is for the sake of reducing
the response time.
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We give more implementation details on RRead and
RWrite in Appendix C of the supplementary file, available
online.

4.2 Dynamic Replication Management

Having described the algorithms for handling I/O opera-
tions, we now present the detailed design of the replication
manager. The dynamic replication management has two
major functionalities. First, we need to select the page that
is most likely to achieve a high performance gain to repli-
cate, given the replication budget. That leads to the design
of page selection policies. Second, the extra accesses cause
interferences to the normal I/O accesses, and we take
advantage of idle periods to perform the extra accesses
in order to reduce the interference. Thus, we develop
algorithms to decide when to perform the extra accesses.

4.2.1 Page Selection Policies

While replication can improve the response time upon the
occurrences of internal activities, it has the two drawbacks.
First, replicating a page for K times causes (K — 1) extra
writes. These writes consume disk bandwidth, especially
for the poor random write performance on the flash disk.
Even worse, they can trigger more internal activities. Sec-
ond, replication consumes disk space. Ideally, we should
replicate the hot pages that are frequently blocked during
their accesses, such that their replicas are available when
internal activities occur.

Analyzing the replication management, we find that
dynamic replication management is analogous to buffer
management. Both of these two management problems are
to maximize the performance gain given the limited mem-
ory/disk space budget. The disk space budget in the replica-
tion management corresponds to the buffer size in the buffer
management. Upon a page access, a page has been replicated
(i.e., a hit in the replication management), which corresponds
to the page access hit in the buffer management. On the other
hand, a page is not replicated (i.e., a miss in the replication
management), which corresponds to a miss in the buffer
management. Thus, the hit rate is an important metric for the
replication manager. Based on such a correspondence, a
large set of replacement policies in buffer management
becomes relevant to the replication management.

We define the replica group set, S, to be the set of replica-
tion groups in the replication manager. We define the size
of S, [S], to be the total space of the pages in S. For a page
access, if the page belongs to any replica group in the replica
group set, the access is a hit. Otherwise, it is a miss.

Since least recently used (LRU) is a common and basic
algorithm, we start with LRU. The detailed algorithm can
be found in Appendix C of the supplementary file, available
online. We have developed a more advanced algorithm for
replication management.

Due to the hardware design and workload characteris-
tics, the blocking probabilities are different across pages.
We observed this phenomenon on both simulated and real
flash disks. There are two major causes for the uneven
blocking probabilities.

The first cause is on spatial reasons. The blocking proba-
bility of a page is affected by other pages within the same
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Fig. 3. Dynamic replication management: (a) an example of LRU, (b) an
example of two regions in PBLRU.

erase block. In an SSD with block-based FTL mapping, if a
page has a very high update rate, the pages within the same
erase block have a relatively high blocking probability.
Moreover, in some FTL design, blocks within the same chip
are allocated with a high priority [13]. On the other hand,
the page/block mapping often uses a hybrid approach com-
bining both static and dynamic page mapping [1], [5], [12].
Static page mapping can lead to non-uniform occurrence of
internal activities across chips.

The second cause is on temporal reasons. Some chips
may have more frequent erasures than others, when the free
blocks are unevenly distributed among the chips. While
wear leveling attempts to resolve this unevenness, it is per-
formed lazily when certain criteria are met [1].

To distinguish the pages with high and low blocking
probabilities, we propose priority based least recently used
(PBLRU) to manage the replacement of replication. The basic
heuristic of PBLRU is to keep the pages with relatively high
recency and frequency in the replica group set, and to per-
form replacement on the pages with low blocking probability.
Thus, the pages with relatively low blocking probabilities are
more likely to be selected as victims for replacement.

Ideally, we should assign the total order to pages
according to recency and blocking probability. However,
it is hard to combine those two metrics into a meaningful
single metric. Thus, we develop a simple yet effective
approach to distinguish the pages with high and low
blocking probabilities.

In PBLRU, we divide the LRU queue into two regions,
namely recency region and priority region. Recency region
is from the head of the LRU queue (the mostly recently
accessed replica group), while priority region is from the
tail of the LRU queue. Fig. 3b shows an example of the
LRU queue in PBLRU, consisting of seven replication
groups. The size of priority region is three replication
groups. The example blocking probability is listed below
each replica group. We define the blocking probability of
the replica group to be the sum of the blocking probabil-
ity of all the pages in the replica group. The recency
region consists of recently accessed replication groups
and most of replication hits are generated in this region.
The priority region consists of replication groups which
are candidates for eviction. PBLRU selects a replica
group to evict in the priority region according to the
blocking probability of the replica group. The replica
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group with the lowest blocking probability is chosen as
the victim.

The replacement order of PBLRU is different from that of
LRU. For example, under LRU, the last element in the LRU
queue is always evicted first. Thus, the priority for being a
victim is in the order of G, F, and E in Fig. 3a. However,
under PBLRU, according to the blocking probability, the
evictions are in the order of F, G, and E.

The size of recency region (CR) is a tuning parameter. It
is important to adjust CR properly according to the differ-
ence among the blocking probability. If the replication
groups have almost the same blocking probability, we
should keep CR large to avoid evicting the hot replication
groups in the priority region. Otherwise, we should set CR
to reasonably small, in order to keep the pages with high
blocking probability. The experimental tuning evaluation
will be presented in our performance study.

PBLRU handles an I/O request according to Algo-
rithm 3. As PBLRU handles the I/O request, replicas are
added to the replica groups. I/O reads and writes are
handled differently in PBLRU. If the I/O request is a
RWrite, we produce a new replica group, and replace the
one in the replica group set in PBLRU, if available. For a
RRead, we replicate the page according to its blocking
probability. Only when the blocking probability is higher
than a threshold (5 percent in our experiments), we rep-
licate the page.

Algorithm 3 PBLRU: handling a blocked I/O request in the
replication manager

Description: handling a blocked I/O request ‘o on page
D.

1: if 70 is a write then

2 /* After calling RWrite (p); */

3 if p is in the LRU queue then

4 remove p from the LRU queue;

5: if p is replicated then

6: call AddRG to p into the LRU queue;

7 mark p with L;

8: else

9: /* After calling RRead (p); */

10:  if p is in the LRU queue then

11: move p to the head;

12: adjust the mark of p;

13: else

14: if P, is higher than the threshold then

15: Replicate p;

16: call AddRG to add p to the LRU queue;

17: if the LRU queue is full, remove a replica group from the LRU
queue.

We give an estimation on the number of extra writes.
Denote the blocking probability of a page p to be P,. Extra
writes come from the replications caused by RRead or
RWrite. Suppose the numbers of RRead and RWrite opera-
tions on the page p are R, and W, respectively. Thus,
the number of extra writes is £, =W, x P, + R, x P, x
I(P, > t), where I(z) is an indicator function that equals to
1if x > 0 and 0 otherwise and ¢ is the threshold on blocking
probability. Thus, the total number of extra writes are the
sum of E, for all pages p. From this analysis, we can see that
the blocking probability is an important factor affecting the
number of extra writes, which depends on the workload
and FTL design. In practice, the blocking probability is
expected to be low (mostly smaller than 5 percent in our

studies). On the other hand, reads have relatively low chan-
ces to be blocked than writes. I(P, > t) is 1 for only a very
small portion of read accesses. This observation is also con-
sistent with the previous studies on real workloads [28].
Therefore, the ratio of extra writes in the total write traffic is
small. The extra writes have a relatively small impact on the
endurance of SSDs for real workloads.

4.2.2 Decisions on Extra Accesses

Compared with the normal I/O accesses, the replication
manager issues two kinds of extra accesses, including
writes for creating the replication group and reads for the
replica when the target chip performs the internal activity.
The extra access can cause interference to the normal I/O
accesses, which can offset the performance gain of replica-
tion. There are many opportunities to exploit the idle
period even for the I/O intensive workloads. Thus, we pro-
pose to utilize the idle periods for those extra accesses.

If the idle period is too short, the extra accesses can
cause significant penalty, especially for writes. On the
other hand, if the idle period is lengthy, there are opportu-
nities of performing multiple extra accesses. However, it is
impossible to predict the length of the current idle period
without a priori knowledge. Thus, we estimate the idle
period length distribution in a slot. Then, we adopt a sim-
ple approach to determine whether to perform an extra
access: if the current idle period is longer than the threshold,
we perform an extra access.

Taking advantage of idle periods, we implement writes
in RWrite with asynchronous writes. We maintain a queue
for those asynchronous writes for each chip. Upon a write is
issued by RWrite, it is buffered in a queue of the correspond-
ing chip. Only when we detect an idle period of the target
chip exceeding a threshold value, we remove the write
operation at the head of the queue, and perform the corre-
sponding write.

Let us describe our estimation on determining the
threshold values. The estimation is performed periodically
(the period is called epoch). Within an epoch, we use the
same threshold values. We estimate the threshold values at
the beginning of an epoch according to the histogram of
the previous epoch. We use a histogram to represent the
distribution of idle lengths. Particularly, the histogram is
used to hold the frequency counter of the idle period
lengths. Suppose the histogram has 7"+ 1 buckets denoted
as Hist[i], i=0,1,...,T, where Hist[i] denotes the fre-
quency counter for idle periods with length of i time units
(in our experiments, the time unit u equals to the read
latency). Hist[0] simply represents the number of the mem-
ory accesses. Given a write threshold of ¢ time units, a
memory access delay of (t—f—%— i) will happen for an
idle period of ¢ time units.

To support multiple writes in a lengthy idle period, we
use a vector 7 to represent the write threshold values within
the same idle period. £ [i] is the write threshold value for the
ith write. Consider the scenario that an idle period starts.
We perform the first write if the idle period reaches 0]
cycle. After the write finishes, if we are still in the same idle
period, we will perform the second write if the idle period
lasts for £[1] time units more. We repeat this process by M
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TABLE 2
Default Parameter Settings in Simulator

Parameters Default Setting
B 2KB

E 64 pages

I 4

Cr 0.12ms

Cw 0.4ms

Cg 1.5ms

K 4

Buffer pool size (pages) | 1024

Reserved disk space, R 10%

times so that 7 ' (7]i] + C%) > L, where L is the length of
the longest idle period in number of time units.

We apply similar ideas to reads and writes. On flash
memories, writes have a much higher overhead than reads.
Reads and writes have different threshold values. Since
writes can be performed in the asynchronous manner and
reads cannot, the impact of taking advantage of idle periods

is larger on writes than that on reads.

4.3 Discussions
After presenting replication management algorithms, we
discuss the following issues for the replication manager.
Overhead. The overhead of PBLRU comes from two parts.
The first part is on the storage overhead caused by replica-
tions. It is subject to the user-specified budget. The second
part is the metadata stored in DRAM. In our experiments,
the DRAM usage of the metadata is relatively small.
Limitations. There are several limitations in the design
and implementation of the replication manager. First, our
replication manager is designed for the SSD with intra-disk
parallelism. That means, the proposed techniques are not
suitable for low-end flash memories with little or no intra-
disk parallelism. Second, extra writes can reduce the endur-
ance, although the impact tends to be small in practice.

5 EVALUATION

In this section, we present experimental results on the
overhead of internal activities and on the replication
management.

5.1 Experimental Setup

Our experiments are organized into two parts: simulations
and experiments on real flash disks. The simulation allows
us to study different hardware parameters in a fully con-
trolled manner.

In simulations, we adopt the trace-driven flash disk sim-
ulator [27], which is used in previous studies [1], [33], [36].
Each trace entry represents the page access information (i.e.,
the file and the page to access) as well as a time stamp. The
simulator is a single-threaded program, which simulates
concurrent page accesses through replaying the traces
according to the time stamp of the page accesses. We config-
ured the simulator to emulate a 4 GB flash disk with the /O
settings specified in the Samsung data sheet [39]. We sum-
marize the default parameter settings in Table 2. The life
cycle of an erase block is 10,000 cycles. The simulator has
implemented the basic strategies in FTL, including wear
leveling and basic block mapping policies [1]. The threshold
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on the free disk space to trigger the garbage collection is set
to 5 percent. The wear-leveling algorithm migrates a block
when the block is with less than 85 percent remaining life-
time or the variance of the remaining lifetime among all
blocks is above 20 percent. In our experiments, we vary the
parameters that are mostly relevant to the overhead of frag-
mentation, including the number of chips, I, and the
reserved disk space for cleaning, R, in terms of the percent-
age of the disk capacity.

Evaluating the impact of our algorithms on real flash
disks is a challenging task. Our replication manager is cur-
rently designed as a runtime component in FTL. However,
on real flash disks, FTL is a piece of firmware that is hidden
by SATA interfaces, and we cannot modify FTL. Moreover,
the multi-chip parallelism is also hidden from applications.
Thus, we adopt an approximated approach in the previous
study [11] for multi-chip parallelism within a flash disk.
The replication manager is implemented as a software
library. We divide the flash disk into P equal-sized parti-
tions and treat each partition as a chip for replication. P is
set to be the number of chips in the flash disk. We perform
the replication by picking a free page from a random chip
that does not have the page replica to be accessed. While the
replicated request may also trigger internal activities, we
find that this overhead is small in our experiments with
benchmark workloads. Particularly, we ran our experiments
on a Linux workstation with an Intel 2.4 GHz quad-core
CPU, 8 GB main memory, and SATA flash SSDs. The five
SSDs include three relatively legacy ones (an Mtron MSD-
SATA3035 64 GB, an Intel X25-M 80 GB and an Intel X25-E
64 GB) and two recent ones (an OCZ Vector 256 GB and an
Intel 335 series 240 GB). We calibrate P in the flash disk,
and set P =16 for all SSDs (except P =8 for the Mtron
SSD). We use direct I/O to remove the impact of operating
system page cache.

Workloads. We use three benchmarks on transactional
processing, namely TM-1 [29], TPC-B [44], and TPC-C [45].
The default settings for simulations are 2.4, 2.2 and 2.4 GB
for TPC-C, TPC-B and TM-1, respectively. We use relatively
small databases for simulations. The settings are sufficiently
large for assessing the fragmentation behavior of the simu-
lated 4 GB flash memory and meanwhile allow us to study
the behavior in a detailed manner. The impact of varying
different databases sizes will be studied in the real flash
disk experiments. On real flash disk experiments, the
default settings are 48.0, 22.4, 22.4 GB for TPC-C, TPC-B and
TM-1, respectively.

We run the workload on PostgreSQL 8.4 with default
settings, e.g., the page size is 8 KB. We collect the simula-
tion trace from all the page accesses to the buffer manager
of the PostgreSQL execution. For each real-disk experi-
ment or collecting the simulation trace, we run a sufficient
period of time around 3 hours, including a 30 minutes
warm-up period. The number of clients is 10 for all bench-
marks without thinking time. For other system parame-
ters, the ratio of the buffer pool size to the database size is
set to 1 percent by default. We also study the impact of
the recency region size. The default setting is that the
recency region ratio (i.e., the ratio of the recency region size
to the size of the replication space) is 0.5. The default
epoch size for calculating the suitable threshold values is



HE ET AL.: IMPROVING UPDATE-INTENSIVE WORKLOADS ON FLASH DISKS THROUGH EXPLOITING MULTI-CHIP PARALLELISM 159

9
b3
3

3000

® Restored
wlo replication
 w/ replication

® Restored
w/o replication
® w/ replication

2500

2
8
3

2000

o
3

1500

2
8

Throughput (tps)

1000

“ I on i

TPC-B T™M-1 TPC-C TPC-B T™-1

Average resonse time(ms)

K

o

TPC-C

(a) Throughput (b) Response time

Fig. 4. The throughput and average response time of the three
workloads.

1 minute. We evaluate the impact of different epoch sizes,
and find that the performance is rather stable as long as
the epoch is between 30 seconds and 5 minutes.

More detailed experimental setup and results can be
found in Appendix D of the supplementary file, available
online.

5.2 Simulation Evaluation

We use simulation to study the fragmentation/aging behav-
ior of flash memories as well as the internal impact of our
proposed approach, which cannot be exposed in the real-
disk experiment. In particular, we compare the sustained
performance with PBLRU, with the restored performance
and the sustained performance without replication.

Fig. 4 shows the throughput and the average response
time of the three workloads. We study the restored perfor-
mance as well as the sustained performance with and
without replication (denoted as “w/ replication” and “w/o
replication,” respectively). We make two major observa-
tions. First, compared with the restored state, fragmentation
significantly degrades the transaction processing through-
put and increases the average response time. The perfor-
mance degradation is similar for all these three workloads.
For example, on TPC-C, the throughput decreases by 71 per-
cent and the average response time increases by 100 percent.
Second, our replication techniques are helpful on frag-
mented flash disk, exploiting the chip parallelism within
the flash disk. Replication improves the throughput by
176 percent and reduces the average response time by
59 percent. The sustained throughput with replication is
only 26 percent lower than the restored throughput, and the
response time is 25 percent higher.

The significant performance degradation is due to the
increasing overhead of the internal activities, as the flash
disk ages. Fig. 5 shows the time breakdown per run when
the buffer contains 1,024 pages. We divide the total time
into two parts, Busy and Other, which represent the time
when the chip handles I/O requests and time components
other than the busy time, respectively. The Busy time is

40000
35000
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25000 +

20000 Busy
15000
10000
5000

= Others

Time breakdown (ms)

w/o replication w/ replication

Fig. 5. The time breakdown with and without replication per run.
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Fig. 6. The number of restarted transactions.

directly obtained from the simulator. The Other component
measures the overhead when transaction executions are
blocked by internal activities. Without replication, the busy
time is only 14 percent of the total time. Due to the overhead
of internal activities, the concurrency level of transaction
processing is reduced. This is validated by the dramatic
increase in the response time of transactions. Replication
helps on exploiting the portion of idle time. With replica-
tion, the Busy time contributes to 33 percent of the total
time. Since replication exploits the chip parallelism in the
flash disk, it issues more reads/writes to the flash disk. This
results in a higher bandwidth utilization.

We next investigate the overhead of fragmentation on
concurrency control. We also observe an increasing number
of restarted transactions. Fig. 6 shows the number of
restarted transactions per run when the flash disk is in the
sustained state. Due to fragmentation, the time for holding
alock by a transaction becomes long, which increases prob-
ability of transaction conflicts. Specifically, fragmentation
increases the number of restarted transactions by 200 per-
cent, and replication reduces this number by 50 percent.

5.3 Results on Real Flash Disks

We first study the performance of running the three bench-
marks on PostgreSQL with and without replication. We
integrate the replication manager into PostgreSQL, as an
extension to the storage manager. Fig. 7 shows performance
improvement of our replication approach when the disk
space budget for the replication manager is set to be 10 per-
cent of the database size. We measure the response time
with default settings, e.g., 10 clients and without thinking
time. The policy used in replication manager is PBLRU.
Replication improves the average transaction response time
on real flash disks, with an improvement of 14-22 percent.
We observe similar improvement on the throughput com-
parison. The largest improvement is 22 percent for TPC-C
on Mtron disk. The main memory consumption of the repli-
cation manager is less than 20 MB for all the benchmarks (2-
3 percent of the main memory buffer size).

Let us study the overhead of replication in more details.
The overhead includes the storage overhead as well as the
interference to the normal I/O operations. In our experi-
ments, the maximum number of replicas per replica group
(K) is three on all real flash disks. Moreover, most replica
groups have two replicas. For example, on the Mtron disk,
the number of replicas in over 95 percent replica groups is
two, and the remainder 5 percent are three. Table 3 shows
the ratios categorized by the number of 1/O per operation
in RRead and RWrite. Over 80 percent of RRead and 54 per-
cent of RWrite calls issue a single I/O operation. A very
small ratio of RRead and RWrite issues three 1/Os within
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one call. This result indicates that chip parallelism is avail-
able with a high probability for our simple approach.

As for the interference to normal I/O operations, we cal-
culate the interference in a chip to be the total time that an
extra access is being performed and at the same time there
is at least one normal I/O request in the queue of the chip.
In our measurements, the interference is smaller than 3 per-
cent of the total execution time on all chips.

Fig. 7c shows the average response time improvement
for the 1 percent worst transactions of our replication based
approach. Replication significantly reduces the average
response time of the 1 percent worst transactions. The
improvement of TPC-C is 20-39 percent. The improvements
are more significant than those on the average response
time of all transactions. This is because replication effec-
tively hides the overhead of internal activities, reducing the
response time outlier.

Table 4 compares the ratio of extra writes compared with
the approach without replication on Intel X25-E and OCZ
disks. The ratio of extra writes caused by page replications
in PBLRU is lower than 5.4 percent for the three bench-
marks. Due to those extra writes, our replication introduces
a reasonable small increase on the occurrences of internal
activities and a small degradation on the life time. By differ-
entiating the pages with blocking probabilities, PBLRU
always has a smaller number of writes than LRU. We fur-
ther analyze the extra writes caused by RWrite or RRead,
and find that over 90 percent of extra writes are caused by
RWrite. Additionally, our estimation on the number of extra
writes is close to the measurement (with the difference of
10-20 percent).

TABLE 3
Ratio of RRead and RWrite Calls Categorized by
the Number of 1/0 per Operation on Mtron

1 2 3
RRead | 80.2% | 18.5% | 1.3%
RWrite | 54.2% | 39.9% | 5.9%
TABLE 4

Ratio of Extra Writes Compared with “w/o Replication”
Approach on Intel X25-E and OCZ Disks

5.4 Comparisons with Other Approaches

We further adopted two recent algorithms [2], [47] to our
scenario for comparison. Overall, we observe similar results
on the evaluated disks: 1) while those two individual techni-
ques can also reduce the overhead of internal activities, they
are generally inferior to our replication approach; 2) com-
bining those individual techniques and replication often
leads to larger performance improvements. For space inter-
ests, we present the detailed results on comparing CFLRU/
E [47], with a focus on the results from TPC-C on the OCZ
flash disk only. The comparisons with differential RAID [2]
can be found in Appendix D of the supplementary file,
available online.

CFLRU/E [47] is originally designed as a buffer man-
agement algorithm, which chooses the victims with the
priority firstly on the clean pages and secondly the dirty
pages with the lowest block erase frequency. We approxi-
mate the block erase frequency with our blocking proba-
bility. Current PostgreSQL uses a LRU-like algorithm, and
a direct comparison with CFLRU/E is unfair. Therefore,
we further implemented CFLRU/E into our replication
approach, and denote this algorithm to be “CFLRU/E
+Replication.” Table 5 shows the throughput and response
time improvement over the baseline (without replication)
and the normalized number of writes of TPC-C on the
OCZ disk. We normalize the number of writes to the num-
ber of writes in the baseline. The number of writes is a
direct measurement on the lifetime of the flash disk. We
make two major observations. First, CFLRU/E has better
performance than the baseline approach. This is due to the
significant reduction on the number of writes by the flash-
aware buffer management in CFLRU/E. Second, the
combined approach on replication and CRLRU/E further
improves the throughput.

6 CONCLUDING REMARKS

In this paper, we study the transaction processing as one
typical and important update-intensive workloads on flash
disks. We experimentally evaluate the impact of costly

TABLE 5
Comparing Replication and CFLRU/E [47]
of Running TPC-C on the OCZ Disk

X25-E TPC-C | TPC-B | TM-1
LRU 8.2% 7.4% 6.5%
PBLRU | 5.4% 5.2% 4.9%
ocZ TPC-C | TPC-B | TM-1
LRU 7.3% 6.2% 5.4%
PBLRU | 3.9% 4.1% 3.5%

Throughput im- | Response time | Normalized

provement improvement #writes
Replication 16% 15% 103.9%
CFLRU/E 5% 7% 90.5%
CFLRU/E + | 18% 19% 97.8%
Replication
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internal activities with two complementary approaches,
simulations and real flash disks. Both approaches demon-
strate significant performance degradation of transaction
processing on fragmented flash disk. We further develop a
dynamic replication approach to improve the performance
of update-intensive workloads on flash disks. Our replica-
tion exploits the data localities to maximize the effective-
ness of replication, as well as the idle periods to reduce the
overhead. Our simulation results show that, under various
flash disk configurations, the replication manager improves
the response time by 59 percent, and the experimental
results on real flash disks demonstrate an improvement by
22 percent on the response time. Our work is relevant to big
data and enterprise applications for improving the perfor-
mance of update-intensive workloads with SSDs.
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